Conditions for β-perfectness
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 123-148

Voir la notice de l'article provenant de la source Library of Science

A β-perfect graph is a simple graph G such that χ(G') = β(G') for every induced subgraph G' of G, where χ(G') is the chromatic number of G', and β(G') is defined as the maximum over all induced subgraphs H of G' of the minimum vertex degree in H plus 1 (i.e., δ(H)+1). The vertices of a β-perfect graph G can be coloured with χ(G) colours in polynomial time (greedily).
Keywords: chromatic number, colouring number, polynomial time
@article{DMGT_2002_22_1_a10,
     author = {Keijsper, Judith and Tewes, Meike},
     title = {Conditions for \ensuremath{\beta}-perfectness},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {123--148},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a10/}
}
TY  - JOUR
AU  - Keijsper, Judith
AU  - Tewes, Meike
TI  - Conditions for β-perfectness
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 123
EP  - 148
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a10/
LA  - en
ID  - DMGT_2002_22_1_a10
ER  - 
%0 Journal Article
%A Keijsper, Judith
%A Tewes, Meike
%T Conditions for β-perfectness
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 123-148
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a10/
%G en
%F DMGT_2002_22_1_a10
Keijsper, Judith; Tewes, Meike. Conditions for β-perfectness. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 123-148. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a10/