Conditions for β-perfectness
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 123-148.

Voir la notice de l'article provenant de la source Library of Science

A β-perfect graph is a simple graph G such that χ(G') = β(G') for every induced subgraph G' of G, where χ(G') is the chromatic number of G', and β(G') is defined as the maximum over all induced subgraphs H of G' of the minimum vertex degree in H plus 1 (i.e., δ(H)+1). The vertices of a β-perfect graph G can be coloured with χ(G) colours in polynomial time (greedily).
Keywords: chromatic number, colouring number, polynomial time
@article{DMGT_2002_22_1_a10,
     author = {Keijsper, Judith and Tewes, Meike},
     title = {Conditions for \ensuremath{\beta}-perfectness},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {123--148},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a10/}
}
TY  - JOUR
AU  - Keijsper, Judith
AU  - Tewes, Meike
TI  - Conditions for β-perfectness
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 123
EP  - 148
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a10/
LA  - en
ID  - DMGT_2002_22_1_a10
ER  - 
%0 Journal Article
%A Keijsper, Judith
%A Tewes, Meike
%T Conditions for β-perfectness
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 123-148
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a10/
%G en
%F DMGT_2002_22_1_a10
Keijsper, Judith; Tewes, Meike. Conditions for β-perfectness. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 123-148. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a10/

[1] L.W. Beineke, Characterizations of derived graphs, J. Combin. Theory 9 (1970) 129-135, doi: 10.1016/S0021-9800(70)80019-9.

[2] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X.

[3] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vusković, Finding an even hole in a graph, in: Proceedings of the 38th Annual Symposium on Foundations of Computer Science (1997) 480-485, doi: 10.1109/SFCS.1997.646136.

[4] G.A. Dirac, On rigid circuit graphs, Abh. Math. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776.

[5] P. Erdős and A. Hajnal, On the chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar. 17 (1966) 61-99, doi: 10.1007/BF02020444.

[6] C. Figueiredo and K. Vusković, A class of β-perfect graphs, Discrete Math. 216 (2000) 169-193, doi: 10.1016/S0012-365X(99)00240-X.

[7] H.-J. Finck and H. Sachs, Über eine von H.S. Wilf angegebene Schranke für die chromatische Zahl endlicher Graphen, Math. Nachr. 39 (1969) 373-386, doi: 10.1002/mana.19690390415.

[8] T.R. Jensen and B. Toft, Graph colouring problems (Wiley, New York, 1995).

[9] S.E. Markossian, G.S. Gasparian and B.A. Reed, β-perfect graphs, J. Combin. Theory (B) 67 (1996) 1-11, doi: 10.1006/jctb.1996.0030.