Heavy cycles in weighted graphs
Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 7-15.

Voir la notice de l'article provenant de la source Library of Science

An (edge-)weighted graph is a graph in which each edge e is assigned a nonnegative real number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges, and an optimal cycle is one of maximum weight. The weighted degree w(v) of a vertex v is the sum of the weights of the edges incident with v. The following weighted analogue (and generalization) of a well-known result by Dirac for unweighted graphs is due to Bondy and Fan. Let G be a 2-connected weighted graph such that w(v) ≥ r for every vertex v of G. Then either G contains a cycle of weight at least 2r or every optimal cycle of G is a Hamilton cycle. We prove the following weighted analogue of a generalization of Dirac's result that was first proved by Pósa. Let G be a 2-connected weighted graph such that w(u)+w(v) ≥ s for every pair of nonadjacent vertices u and v. Then G contains either a cycle of weight at least s or a Hamilton cycle. Examples show that the second conclusion cannot be replaced by the stronger second conclusion from the result of Bondy and Fan. However, we characterize a natural class of edge-weightings for which these two conclusions are equivalent, and show that such edge-weightings can be recognized in time linear in the number of edges.
Keywords: weighted graph, (long, optimal, Hamilton) cycle, (edge-, vertex-)weighting, weighted degree
@article{DMGT_2002_22_1_a1,
     author = {Bondy, J. and Broersma, Hajo and van den Heuvel, Jan and Veldman, Henk},
     title = {Heavy cycles in weighted graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {7--15},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a1/}
}
TY  - JOUR
AU  - Bondy, J.
AU  - Broersma, Hajo
AU  - van den Heuvel, Jan
AU  - Veldman, Henk
TI  - Heavy cycles in weighted graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2002
SP  - 7
EP  - 15
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a1/
LA  - en
ID  - DMGT_2002_22_1_a1
ER  - 
%0 Journal Article
%A Bondy, J.
%A Broersma, Hajo
%A van den Heuvel, Jan
%A Veldman, Henk
%T Heavy cycles in weighted graphs
%J Discussiones Mathematicae. Graph Theory
%D 2002
%P 7-15
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a1/
%G en
%F DMGT_2002_22_1_a1
Bondy, J.; Broersma, Hajo; van den Heuvel, Jan; Veldman, Henk. Heavy cycles in weighted graphs. Discussiones Mathematicae. Graph Theory, Tome 22 (2002) no. 1, pp. 7-15. http://geodesic.mathdoc.fr/item/DMGT_2002_22_1_a1/

[1] B. Bollobás and A.D. Scott, A proof of a conjecture of Bondy concerning paths in weighted digraphs, J. Combin. Theory (B) 66 (1996) 283-292, doi: 10.1006/jctb.1996.0021.

[2] J.A. Bondy, Basic graph theory: paths and circuits, in: R.L. Graham, M. Grötschel and L. Lovász, eds., Handbook of Combinatorics (North-Holland, Amsterdam, 1995) 3-110.

[3] J.A. Bondy and G. Fan, Optimal paths and cycles in weighted graphs, Annals of Discrete Math. 41 (1989) 53-69, doi: 10.1016/S0167-5060(08)70449-7.

[4] J.A. Bondy and G. Fan, Cycles in weighted graphs, Combinatorica 11 (1991) 191-205, doi: 10.1007/BF01205072.

[5] J.A. Bondy and S.C. Locke, Relative lengths of paths and cycles in 3-connected graphs, Discrete Math. 33 (1981) 111-122, doi: 10.1016/0012-365X(81)90159-X.

[6] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).

[7] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.

[8] L. Pósa, On the circuits of finite graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 355-361.

[9] T. Spencer (Personal communication, 1992).

[10] Yan Lirong (Personal communication, 1990).