Remarks on partially square graphs, hamiltonicity and circumference
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 255-266
Voir la notice de l'article provenant de la source Library of Science
Given a graph G, its partially square graph G* is a graph obtained by adding an edge (u,v) for each pair u, v of vertices of G at distance 2 whenever the vertices u and v have a common neighbor x satisfying the condition N_G(x) ⊆ N_G[u] ∪ N_G[v], where N_G[x] = N_G(x) ∪ x. In the case where G is a claw-free graph, G* is equal to G². We define σ°ₜ = min ∑_x∈S d_G(x):S is an independent set in G* and |S| = t. We give for hamiltonicity and circumference new sufficient conditions depending on σ° and we improve some known results.
Keywords:
partially square graph, claw-free graph, independent set, hamiltonicity and circumference
@article{DMGT_2001_21_2_a9,
author = {Kheddouci, Hamamache},
title = {Remarks on partially square graphs, hamiltonicity and circumference},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {255--266},
publisher = {mathdoc},
volume = {21},
number = {2},
year = {2001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a9/}
}
TY - JOUR AU - Kheddouci, Hamamache TI - Remarks on partially square graphs, hamiltonicity and circumference JO - Discussiones Mathematicae. Graph Theory PY - 2001 SP - 255 EP - 266 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a9/ LA - en ID - DMGT_2001_21_2_a9 ER -
Kheddouci, Hamamache. Remarks on partially square graphs, hamiltonicity and circumference. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 255-266. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a9/