Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2001_21_2_a6, author = {Schiermeyer, Ingo}, title = {On the stability for pancyclicity}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {223--228}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a6/} }
Schiermeyer, Ingo. On the stability for pancyclicity. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 223-228. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a6/
[1] J.A. Bondy, Pancyclic graphs, in: R.C. Mullin, K.B. Reid, D.P. Roselle and R.S.D. Thomas, eds, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing, Congressus Numerantium III (1971) 167-172.
[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135, doi: 10.1016/0012-365X(76)90078-9.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan Press, 1976).
[4] R. Faudree, O. Favaron, E. Flandrin and H. Li, Pancyclism and small cycles in graphs, Discuss. Math. Graph Theory 16 (1996) 27-40, doi: 10.7151/dmgt.1021.
[5] U. Schelten and I. Schiermeyer, Small cycles in Hamiltonian graphs, Discrete Applied Math. 79 (1997) 201-211, doi: 10.1016/S0166-218X(97)00043-7.