Vertex-disjoint stars in graphs
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 179-185.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we give a sufficient condition for a graph to contain vertex-disjoint stars of a given size. It is proved that if the minimum degree of the graph is at least k+t-1 and the order is at least (t+1)k + O(t²), then the graph contains k vertex-disjoint copies of a star K_1,t. The condition on the minimum degree is sharp, and there is an example showing that the term O(t²) for the number of uncovered vertices is necessary in a sense.
Keywords: stars, vertex-disjoint copies, minimum degree
@article{DMGT_2001_21_2_a3,
     author = {Ota, Katsuhiro},
     title = {Vertex-disjoint stars in graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {179--185},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a3/}
}
TY  - JOUR
AU  - Ota, Katsuhiro
TI  - Vertex-disjoint stars in graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 179
EP  - 185
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a3/
LA  - en
ID  - DMGT_2001_21_2_a3
ER  - 
%0 Journal Article
%A Ota, Katsuhiro
%T Vertex-disjoint stars in graphs
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 179-185
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a3/
%G en
%F DMGT_2001_21_2_a3
Ota, Katsuhiro. Vertex-disjoint stars in graphs. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 179-185. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a3/

[1] N. Alon and E. Fischer, Refining the graph density condition for the existence of almost K-factors, Ars Combin. 52 (1999) 296-308.

[2] N. Alon and R. Yuster, H-Factors in dense graphs, J. Combin. Theory (B) 66 (1996) 269-282, doi: 10.1006/jctb.1996.0020.

[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hunger. 14 (1963) 423-443, doi: 10.1007/BF01895727.

[4] G.A. Dirac, On the maximal number of independent triangle in graphs, Abh. Sem. Univ. Hamburg 26 (1963) 78-82, doi: 10.1007/BF02992869.

[5] H. Enomoto, Graph decompositions without isolated vertices, J. Combin. Theory (B) 63 (1995) 111-124, doi: 10.1006/jctb.1995.1007.

[6] Y. Egawa and K. Ota, Vertex-disjoint claws in graphs, Discrete Math. 197/198 (1999) 225-246.

[7] H. Enomoto, A. Kaneko and Zs. Tuza, P₃-factors and covering cycles in graphs of minimum degree n/3, Colloq. Math. Soc. János Bolyai 52 (1987) 213-220.

[8] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Colloq. Math. Soc. János Bolyai 4 (1970) 601-623.

[9] J. Komlós, Tiling Turán theorems, Combinatorica 20 (2000) 203-218.