Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2001_21_2_a3, author = {Ota, Katsuhiro}, title = {Vertex-disjoint stars in graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {179--185}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a3/} }
Ota, Katsuhiro. Vertex-disjoint stars in graphs. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 179-185. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a3/
[1] N. Alon and E. Fischer, Refining the graph density condition for the existence of almost K-factors, Ars Combin. 52 (1999) 296-308.
[2] N. Alon and R. Yuster, H-Factors in dense graphs, J. Combin. Theory (B) 66 (1996) 269-282, doi: 10.1006/jctb.1996.0020.
[3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math. Acad. Sci. Hunger. 14 (1963) 423-443, doi: 10.1007/BF01895727.
[4] G.A. Dirac, On the maximal number of independent triangle in graphs, Abh. Sem. Univ. Hamburg 26 (1963) 78-82, doi: 10.1007/BF02992869.
[5] H. Enomoto, Graph decompositions without isolated vertices, J. Combin. Theory (B) 63 (1995) 111-124, doi: 10.1006/jctb.1995.1007.
[6] Y. Egawa and K. Ota, Vertex-disjoint claws in graphs, Discrete Math. 197/198 (1999) 225-246.
[7] H. Enomoto, A. Kaneko and Zs. Tuza, P₃-factors and covering cycles in graphs of minimum degree n/3, Colloq. Math. Soc. János Bolyai 52 (1987) 213-220.
[8] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdős, Colloq. Math. Soc. János Bolyai 4 (1970) 601-623.
[9] J. Komlós, Tiling Turán theorems, Combinatorica 20 (2000) 203-218.