A note on domination parameters of the conjunction of two special graphs
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 303-310.

Voir la notice de l'article provenant de la source Library of Science

A dominating set D of G is called a split dominating set of G if the subgraph induced by the subset V(G)-D is disconnected. The cardinality of a minimum split dominating set is called the minimum split domination number of G. Such subset and such number was introduced in [4]. In [2], [3] the authors estimated the domination number of products of graphs. More precisely, they were study products of paths. Inspired by those results we give another estimation of the domination number of the conjunction (the cross product) Pₙ ∧ G. The split domination number of Pₙ ∧ G also is determined. To estimate this number we use the minimum connected domination number γ_c(G).
Keywords: domination parameters, conjunction of graphs
@article{DMGT_2001_21_2_a13,
     author = {Zwierzchowski, Maciej},
     title = {A note on domination parameters of the conjunction of two special graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {303--310},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a13/}
}
TY  - JOUR
AU  - Zwierzchowski, Maciej
TI  - A note on domination parameters of the conjunction of two special graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 303
EP  - 310
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a13/
LA  - en
ID  - DMGT_2001_21_2_a13
ER  - 
%0 Journal Article
%A Zwierzchowski, Maciej
%T A note on domination parameters of the conjunction of two special graphs
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 303-310
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a13/
%G en
%F DMGT_2001_21_2_a13
Zwierzchowski, Maciej. A note on domination parameters of the conjunction of two special graphs. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 303-310. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a13/

[1] R. Diestel, Graph Theory (Springer-Verlag, New York, Inc., 1997).

[2] S. Gravier and A. Khelladi, On the domination number of cross products of graphs, Discrete Math. 145 (1995) 273-277, doi: 10.1016/0012-365X(95)00091-A.

[3] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs: I, Ars Combin. 18 (1983) 33-44.

[4] V.R. Kulli and B. Janakiram, The split domination number of a graph, Graph Theory Notes of New York XXXII (1997) 16-19.

[5] E. Sampathkumar and H.B. Walikar, The connected domination number of graph, J. Math. Phy. Sci. 13 (1979) 607-613.