Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2001_21_2_a11, author = {Frick, Marietjie and Bullock, Frank}, title = {Detour chromatic numbers}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {283--291}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/} }
Frick, Marietjie; Bullock, Frank. Detour chromatic numbers. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 283-291. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanisin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] I. Broere, M. Dorfling, J. E. Dunbar and M. Frick, A Pathological Partition Problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068.
[3] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058.
[4] G. Chartrand, D.P. Geller and S. Hedetniemi, A generalization of the chromatic number, Proc. Cambridge Phil. Soc. 64 (1968) 265-271.
[5] G. Chartrand and L. Lesniak, Graphs Digraphs (Chapman Hall, London, 3rd Edition, 1996).
[6] J.E. Dunbar and M. Frick, Path kernels and partitions, JCMCC 31 (1999) 137-149.
[7] J.E. Dunbar, M. Frick and F. Bullock, Path partitions and maximal Pₙ-free sets, submitted.
[8] E. Györi, A.V. Kostochka and T. Łuczak, Graphs without short odd cycles are nearly bipartite, Discrete Math. 163 (1997) 279-284, doi: 10.1016/0012-365X(95)00321-M.
[9] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).