Detour chromatic numbers
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 283-291

Voir la notice de l'article provenant de la source Library of Science

The nth detour chromatic number, χₙ(G) of a graph G is the minimum number of colours required to colour the vertices of G such that no path with more than n vertices is monocoloured. The number of vertices in a longest path of G is denoted by τ( G). We conjecture that χₙ(G) ≤ ⎡(τ(G))/n⎤ for every graph G and every n ≥ 1 and we prove results that support the conjecture. We also present some sufficient conditions for a graph to have nth chromatic number at most 2.
Keywords: detour, generalised chromatic number, longest path, vertex partition, girth, circumference, nearly bipartite
@article{DMGT_2001_21_2_a11,
     author = {Frick, Marietjie and Bullock, Frank},
     title = {Detour chromatic numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {283--291},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/}
}
TY  - JOUR
AU  - Frick, Marietjie
AU  - Bullock, Frank
TI  - Detour chromatic numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 283
EP  - 291
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/
LA  - en
ID  - DMGT_2001_21_2_a11
ER  - 
%0 Journal Article
%A Frick, Marietjie
%A Bullock, Frank
%T Detour chromatic numbers
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 283-291
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/
%G en
%F DMGT_2001_21_2_a11
Frick, Marietjie; Bullock, Frank. Detour chromatic numbers. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 283-291. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/