Detour chromatic numbers
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 283-291.

Voir la notice de l'article provenant de la source Library of Science

The nth detour chromatic number, χₙ(G) of a graph G is the minimum number of colours required to colour the vertices of G such that no path with more than n vertices is monocoloured. The number of vertices in a longest path of G is denoted by τ( G). We conjecture that χₙ(G) ≤ ⎡(τ(G))/n⎤ for every graph G and every n ≥ 1 and we prove results that support the conjecture. We also present some sufficient conditions for a graph to have nth chromatic number at most 2.
Keywords: detour, generalised chromatic number, longest path, vertex partition, girth, circumference, nearly bipartite
@article{DMGT_2001_21_2_a11,
     author = {Frick, Marietjie and Bullock, Frank},
     title = {Detour chromatic numbers},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {283--291},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/}
}
TY  - JOUR
AU  - Frick, Marietjie
AU  - Bullock, Frank
TI  - Detour chromatic numbers
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 283
EP  - 291
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/
LA  - en
ID  - DMGT_2001_21_2_a11
ER  - 
%0 Journal Article
%A Frick, Marietjie
%A Bullock, Frank
%T Detour chromatic numbers
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 283-291
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/
%G en
%F DMGT_2001_21_2_a11
Frick, Marietjie; Bullock, Frank. Detour chromatic numbers. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 283-291. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a11/

[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanisin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[2] I. Broere, M. Dorfling, J. E. Dunbar and M. Frick, A Pathological Partition Problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068.

[3] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058.

[4] G. Chartrand, D.P. Geller and S. Hedetniemi, A generalization of the chromatic number, Proc. Cambridge Phil. Soc. 64 (1968) 265-271.

[5] G. Chartrand and L. Lesniak, Graphs Digraphs (Chapman Hall, London, 3rd Edition, 1996).

[6] J.E. Dunbar and M. Frick, Path kernels and partitions, JCMCC 31 (1999) 137-149.

[7] J.E. Dunbar, M. Frick and F. Bullock, Path partitions and maximal Pₙ-free sets, submitted.

[8] E. Györi, A.V. Kostochka and T. Łuczak, Graphs without short odd cycles are nearly bipartite, Discrete Math. 163 (1997) 279-284, doi: 10.1016/0012-365X(95)00321-M.

[9] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).