Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2001_21_2_a10, author = {Randerath, Bert and Schiermeyer, Ingo}, title = {Colouring graphs with prescribed induced cycle lengths}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {267--281}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a10/} }
TY - JOUR AU - Randerath, Bert AU - Schiermeyer, Ingo TI - Colouring graphs with prescribed induced cycle lengths JO - Discussiones Mathematicae. Graph Theory PY - 2001 SP - 267 EP - 281 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a10/ LA - en ID - DMGT_2001_21_2_a10 ER -
Randerath, Bert; Schiermeyer, Ingo. Colouring graphs with prescribed induced cycle lengths. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 2, pp. 267-281. http://geodesic.mathdoc.fr/item/DMGT_2001_21_2_a10/
[1] J.A. Bondy and U.S.R. Murty, Graph Theory and Applications (Macmillan, London and Elsevier, New York, 1976).
[2] A. Brandstädt, Van Bang Le and J.P. Spinrad, Graph classes: a survey, SIAM Monographs on Discrete Mathematics and Applications (SIAM, Philadelphia, PA, 1999).
[3] S. Brandt, Triangle-free graphs without forbidden subgraphs, Electronic Notes in Discrete Math. Vol. 3.
[4] P. Erdös, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38, doi: 10.4153/CJM-1959-003-9.
[5] P. Erdős, Some of my favourite unsolved problems, in: A. Baker, B. Bollobás and A. Hajnal, eds. A tribute to Paul Erdős (Cambridge Univ. Press, Cambridge, 1990) 467.
[6] A. Gyárfás, Problems from the world surrounding perfect graphs, Zastos. Mat. XIX (1987) 413-441.
[7] A. Gyárfás, Graphs with k odd cycle lengths, Discrete Math. 103 (1992) 41-48, doi: 10.1016/0012-365X(92)90037-G.
[8] T.R. Jensen, B.Toft, Graph Colouring problems (Wiley-Interscience Publications, New York, 1995).
[9] S.E. Markossian, G.S. Gasparian and B.A. Reed, β-Perfect Graphs, J. Combin. Theory (B) 67 (1996) 1-11, doi: 10.1006/jctb.1996.0030.
[10] P. Mihók and I. Schiermeyer, Chromatic number of classes of graphs with prescribed cycle lengths, submitted.
[11] I. Rusu, Berge graphs with chordless cycles of bounded length, J. Graph Theory 32 (1999) 73-79, doi: 10.1002/(SICI)1097-0118(199909)32:173::AID-JGT7>3.0.CO;2-7
[12] A.D. Scott, Induced Cycles and Chromatic Number, J. Combin. Theory (B) 76 (1999) 70-75, doi: 10.1006/jctb.1998.1894.
[13] D.P. Sumner, Subtrees of a Graph and the Chromatic Number, in: G. Chartrand, Y. Alavi, D.L. Goldsmith, L. Lesniak-Foster, and D.R. Lick, eds, The Theory and Applications of Graphs, Proc. 4th International Graph Theory Conference (Kalamazoo, Michigan, 1980) 557-576, (Wiley, New York, 1981).