A note on a new condition implying pancyclism
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 137-143.

Voir la notice de l'article provenant de la source Library of Science

We first show that if a 2-connected graph G of order n is such that for each two vertices u and v such that δ = d(u) and d(v) n/2 the edge uv belongs to E(G), then G is hamiltonian. Next, by using this result, we prove that a graph G satysfying the above condition is either pancyclic or isomorphic to K_n/2,n/2.
Keywords: hamiltonian graphs, pancyclic graphs, cycles
@article{DMGT_2001_21_1_a9,
     author = {Flandrin, Evelyne and Li, Hao and Marczyk, Antoni and Wo\'zniak, Mariusz},
     title = {A note on a new condition implying pancyclism},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {137--143},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a9/}
}
TY  - JOUR
AU  - Flandrin, Evelyne
AU  - Li, Hao
AU  - Marczyk, Antoni
AU  - Woźniak, Mariusz
TI  - A note on a new condition implying pancyclism
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 137
EP  - 143
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a9/
LA  - en
ID  - DMGT_2001_21_1_a9
ER  - 
%0 Journal Article
%A Flandrin, Evelyne
%A Li, Hao
%A Marczyk, Antoni
%A Woźniak, Mariusz
%T A note on a new condition implying pancyclism
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 137-143
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a9/
%G en
%F DMGT_2001_21_1_a9
Flandrin, Evelyne; Li, Hao; Marczyk, Antoni; Woźniak, Mariusz. A note on a new condition implying pancyclism. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 137-143. http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a9/

[1] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.

[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-136, doi: 10.1016/0012-365X(76)90078-9.

[3] J.A. Bondy and U.S.A. Murty, Graph Theory with Applications (Elsevier, North Holland, New York, 1976).

[4] V. Chvátal, On Hamilton's ideals, J. Combin. Theory 12 (B) (1972) 163-168.

[5] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.

[6] G.H. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory (B) 37 (1984) 221-227, doi: 10.1016/0095-8956(84)90054-6.

[7] R. Faudree, O. Favaron, E. Flandrin and H. Li, Pancyclism and small cycles in graphs, Discuss. Math. Graph Theory 16 (1996) 27-40, doi: 10.7151/dmgt.1021.

[8] O. Ore, Note on hamilton circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.

[9] E.F. Schmeichel and S.L. Hakimi, A cycle structure theorem for hamiltonian graphs, J. Combin. Theory (B) 45 (1988) 99-107, doi: 10.1016/0095-8956(88)90058-5.

[10] Z. Skupień, private communication.

[11] R. Zhu, Circumference in 2-connected graphs, Qu-Fu Shiyuan Xuebao 4 (1983) 8-9.

[12] L. Zhenhong, G. Jin and C. Wang, Two sufficient conditions for pancyclic graphs, Ars Combinatoria 35 (1993) 281-290.