Odd and residue domination numbers of a graph
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 119-136

Voir la notice de l'article provenant de la source Library of Science

Let G = (V,E) be a simple, undirected graph. A set of vertices D is called an odd dominating set if |N[v] ∩ D| ≡ 1 (mod 2) for every vertex v ∈ V(G). The minimum cardinality of an odd dominating set is called the odd domination number of G, denoted by γ₁(G). In this paper, several algorithmic and structural results are presented on this parameter for grids, complements of powers of cycles, and other graph classes as well as for more general forms of "residue" domination.
Keywords: dominating set, odd dominating set, parity domination
@article{DMGT_2001_21_1_a8,
     author = {Caro, Yair and Klostermeyer, William and Goldwasser, John},
     title = {Odd and residue domination numbers of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {119--136},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a8/}
}
TY  - JOUR
AU  - Caro, Yair
AU  - Klostermeyer, William
AU  - Goldwasser, John
TI  - Odd and residue domination numbers of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 119
EP  - 136
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a8/
LA  - en
ID  - DMGT_2001_21_1_a8
ER  - 
%0 Journal Article
%A Caro, Yair
%A Klostermeyer, William
%A Goldwasser, John
%T Odd and residue domination numbers of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 119-136
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a8/
%G en
%F DMGT_2001_21_1_a8
Caro, Yair; Klostermeyer, William; Goldwasser, John. Odd and residue domination numbers of a graph. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 119-136. http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a8/