Strongly multiplicative graphs
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 63-75.

Voir la notice de l'article provenant de la source Library of Science

A graph with p vertices is said to be strongly multiplicative if its vertices can be labelled 1,2,...,p so that the values on the edges, obtained as the product of the labels of their end vertices, are all distinct. In this paper, we study structural properties of strongly multiplicative graphs. We show that all graphs in some classes, including all trees, are strongly multiplicative, and consider the question of the maximum number of edges in a strongly multiplicative graph of a given order.
Keywords: graph labelling, multiplicative labelling
@article{DMGT_2001_21_1_a4,
     author = {Beineke, L. and Hegde, S.},
     title = {Strongly multiplicative graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a4/}
}
TY  - JOUR
AU  - Beineke, L.
AU  - Hegde, S.
TI  - Strongly multiplicative graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 63
EP  - 75
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a4/
LA  - en
ID  - DMGT_2001_21_1_a4
ER  - 
%0 Journal Article
%A Beineke, L.
%A Hegde, S.
%T Strongly multiplicative graphs
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 63-75
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a4/
%G en
%F DMGT_2001_21_1_a4
Beineke, L.; Hegde, S. Strongly multiplicative graphs. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a4/

[1] B.D. Acharya and S.M. Hegde, On certain vertex valuations of a graph, Indian J. Pure Appl. Math. 22 (1991) 553-560.

[2] G.S. Bloom, A chronology of the Ringel-Kotzig conjecture and the continuing quest to call all trees graceful, Ann. N.Y. Acad. Sci. 326 (1979) 32-51, doi: 10.1111/j.1749-6632.1979.tb17766.x.

[3] F.R.K. Chung, Labelings of graphs, Selected Topics in Graph Theory 3 (Academic Press, 1988) 151-168.

[4] P. Erdős, An asymptotic inequality in the theory of numbers, Vestnik Leningrad. Univ. 15 (1960) 41-49.

[5] J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Comb. 5 (1998) #DS6.

[6] R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Algebraic Discrete Methods 1 (1980) 382-404, doi: 10.1137/0601045.

[7] A. Rosa, On certain valuations of the vertices of a graph, in: Theory of Graphs, Internat. Symposium, Rome, July 1966 (Gordon and Breach, Dunod, 1967) 349-355.