Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2001_21_1_a2, author = {Chartrand, Gary and Zhang, Ping}, title = {On graphs with a unique minimum hull set}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {31--42}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2001}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a2/} }
Chartrand, Gary; Zhang, Ping. On graphs with a unique minimum hull set. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a2/
[1] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
[2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, to appear.
[3] G. Chartrand, F. Harary and P. Zhang, On the hull number of a graph, Ars Combin. 57 (2000) 129-138.
[4] G. Chartrand and P. Zhang, The geodetic number of an oriented graph, European J. Combin. 21 (2) (2000) 181-189, doi: 10.1006/eujc.1999.0301.
[5] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory 19 (1999) 45-58, doi: 10.7151/dmgt.1084.
[6] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin. Math. Combin. Comput. to appear.
[7] M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223, doi: 10.1016/0012-365X(85)90174-8.
[8] F. Harary and J. Nieminen, Convexity in graphs, J. Differential Geom. 16 (1981) 185-190.
[9] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Mathl. Comput. Modelling. 17 (11) (1993) 89-95, doi: 10.1016/0895-7177(93)90259-2.
[10] H.M. Mulder, The Interval Function of a Graph (Methematisch Centrum, Amsterdam, 1980).
[11] H.M. Mulder, The expansion procedure for graphs, in: Contemporary Methods in Graph Theory ed., R. Bodendiek (Wissenschaftsverlag, Mannheim, 1990) 459-477.
[12] L. Nebeský, A characterization of the interval function of a connected graph, Czech. Math. J. 44 (119) (1994) 173-178.
[13] L. Nebeský, Characterizing of the interval function of a connected graph, Math. Bohem. 123 (1998) 137-144.