On graphs with a unique minimum hull set
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 31-42

Voir la notice de l'article provenant de la source Library of Science

We show that for every integer k ≥ 2 and every k graphs G₁,G₂,...,Gₖ, there exists a hull graph with k hull vertices v₁,v₂,...,vₖ such that link L(v_i) = G_i for 1 ≤ i ≤ k. Moreover, every pair a, b of integers with 2 ≤ a ≤ b is realizable as the hull number and geodetic number (or upper geodetic number) of a hull graph. We also show that every pair a,b of integers with a ≥ 2 and b ≥ 0 is realizable as the hull number and forcing geodetic number of a hull graph.
Keywords: geodetic set, geodetic number, convex hull, hull set, hull number, hull graph
@article{DMGT_2001_21_1_a2,
     author = {Chartrand, Gary and Zhang, Ping},
     title = {On graphs with a unique minimum hull set},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {31--42},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a2/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Zhang, Ping
TI  - On graphs with a unique minimum hull set
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 31
EP  - 42
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a2/
LA  - en
ID  - DMGT_2001_21_1_a2
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Zhang, Ping
%T On graphs with a unique minimum hull set
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 31-42
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a2/
%G en
%F DMGT_2001_21_1_a2
Chartrand, Gary; Zhang, Ping. On graphs with a unique minimum hull set. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 31-42. http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a2/