On Vizing's conjecture
Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 5-11.

Voir la notice de l'article provenant de la source Library of Science

A dominating set D for a graph G is a subset of V(G) such that any vertex in V(G)-D has a neighbor in D, and a domination number γ(G) is the size of a minimum dominating set for G. For the Cartesian product G ⃞ H Vizing's conjecture [10] states that γ(G ⃞ H) ≥ γ(G)γ(H) for every pair of graphs G,H. In this paper we introduce a new concept which extends the ordinary domination of graphs, and prove that the conjecture holds when γ(G) = γ(H) = 3.
Keywords: graph, Cartesian product, domination number
@article{DMGT_2001_21_1_a0,
     author = {Bresar, Bostjan},
     title = {On {Vizing's} conjecture},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a0/}
}
TY  - JOUR
AU  - Bresar, Bostjan
TI  - On Vizing's conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2001
SP  - 5
EP  - 11
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a0/
LA  - en
ID  - DMGT_2001_21_1_a0
ER  - 
%0 Journal Article
%A Bresar, Bostjan
%T On Vizing's conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2001
%P 5-11
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a0/
%G en
%F DMGT_2001_21_1_a0
Bresar, Bostjan. On Vizing's conjecture. Discussiones Mathematicae. Graph Theory, Tome 21 (2001) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGT_2001_21_1_a0/

[1] A.M. Barcalkin and L.F. German, The external stability number of the Cartesian product of graphs, Bul. Acad. Stiinte RSS Moldovenesti 1 (1979) 5-8.

[2] T.Y. Chang and W.Y. Clark, The domination number of the 5×n and 6×n grid graphs, J. Graph Theory 17 (1993) 81-107, doi: 10.1002/jgt.3190170110.

[3] M. El-Zahar and C.M. Pareek, Domination number of products of graphs, Ars Combin. 31 (1991) 223-227.

[4] R.J. Faudree, R.H. Schelp, W.E. Shreve, The domination number for the product of graphs, Congr. Numer. 79 (1990) 29-33.

[5] D.C. Fisher, Domination, fractional domination, 2-packing, and graph products, SIAM J. Discrete Math. 7 (1994) 493-498, doi: 10.1137/S0895480191217806.

[6] B. Hartnell and D.F. Rall, Vizing's conjecture and the one-half argument, Discuss. Math. Graph Theory 15 (1995) 205-216, doi: 10.7151/dmgt.1018.

[7] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs I, Ars Combin. 18 (1983) 33-44.

[8] M.S. Jacobson and L.F. Kinch, On the domination number of products of graphs II: Trees, J. Graph Theory 10 (1986) 97-106, doi: 10.1002/jgt.3190100112.

[9] S. Klavžar and N. Seifter, Dominating Cartesian product of cycles, Discrete Appl. Math. 59 (1995) 129-136, doi: 10.1016/0166-218X(93)E0167-W.

[10] V.G. Vizing, The Cartesian product of graphs, Vycisl. Sist. 9 (1963) 30-43.