Domination and independence subdivision numbers of graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 271-280.

Voir la notice de l'article provenant de la source Library of Science

The domination subdivision number sd_γ(G) of a graph is the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the domination number. Arumugam showed that this number is at most three for any tree, and conjectured that the upper bound of three holds for any graph. Although we do not prove this interesting conjecture, we give an upper bound for the domination subdivision number for any graph G in terms of the minimum degrees of adjacent vertices in G. We then define the independence subdivision number sd_β(G) to equal the minimum number of edges that must be subdivided (where an edge can be subdivided at most once) in order to increase the independence number. We show that for any graph G of order n ≥ 2, either G = K_1,m and sd_β(G) = m, or 1 ≤ sd_β(G) ≤ 2. We also characterize the graphs G for which sd_β(G) = 2.
Keywords: domination, independence, subdivision numbers
@article{DMGT_2000_20_2_a10,
     author = {Haynes, Teresa and Hedetniemi, Sandra and Hedetniemi, Stephen},
     title = {Domination and independence subdivision numbers of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {271--280},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a10/}
}
TY  - JOUR
AU  - Haynes, Teresa
AU  - Hedetniemi, Sandra
AU  - Hedetniemi, Stephen
TI  - Domination and independence subdivision numbers of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 271
EP  - 280
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a10/
LA  - en
ID  - DMGT_2000_20_2_a10
ER  - 
%0 Journal Article
%A Haynes, Teresa
%A Hedetniemi, Sandra
%A Hedetniemi, Stephen
%T Domination and independence subdivision numbers of graphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 271-280
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a10/
%G en
%F DMGT_2000_20_2_a10
Haynes, Teresa; Hedetniemi, Sandra; Hedetniemi, Stephen. Domination and independence subdivision numbers of graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 2, pp. 271-280. http://geodesic.mathdoc.fr/item/DMGT_2000_20_2_a10/

[1] S. Arumugam, private communication, June 2000.

[2] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1973).

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1977).

[4] G. Chartrand and L. Lesniak, Graphs Digraphs (Wadsworth and Brooks/Cole, Monterey, CA, third edition, 1996).

[5] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969).

[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).

[7] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics (Marcel Dekker, Inc., New York, 1998).

[8] G. Hopkins and W. Staton, Graphs with unique maximum independent sets, Discrete Math. 57 (1985) 245-251, doi: 10.1016/0012-365X(85)90177-3.

[9] D.B. West, Introduction to Graph Theory (Prentice Hall, New Jersey, 1996).