Classes of hypergraphs with sum number one
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 93-103
Voir la notice de l'article provenant de la source Library of Science
A hypergraph ℋ is a sum hypergraph iff there are a finite S ⊆ ℕ⁺ and d̲,d̅ ∈ ℕ⁺ with 1 d̲ d̅ such that ℋ is isomorphic to the hypergraph ℋ_d̲,d̅(S) = (V,) where V = S and = e ⊆ S: d̲ |e| d̅ ∧ ∑_v∈ e v∈ S. For an arbitrary hypergraph ℋ the sum number(ℋ ) is defined to be the minimum number of isolatedvertices w₁,..., w_σ∉ V such that ℋ ∪ w₁,..., w_σ is a sum hypergraph.
Keywords:
hypergraphs, sum number, vertex labelling
@article{DMGT_2000_20_1_a6,
author = {Teichert, Hanns-Martin},
title = {Classes of hypergraphs with sum number one},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {93--103},
publisher = {mathdoc},
volume = {20},
number = {1},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a6/}
}
Teichert, Hanns-Martin. Classes of hypergraphs with sum number one. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a6/