Classes of hypergraphs with sum number one
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 93-103.

Voir la notice de l'article provenant de la source Library of Science

A hypergraph ℋ is a sum hypergraph iff there are a finite S ⊆ ℕ⁺ and d̲,d̅ ∈ ℕ⁺ with 1 d̲ d̅ such that ℋ is isomorphic to the hypergraph ℋ_d̲,d̅(S) = (V,) where V = S and = e ⊆ S: d̲ |e| d̅ ∧ ∑_v∈ e v∈ S. For an arbitrary hypergraph ℋ the sum number(ℋ ) is defined to be the minimum number of isolatedvertices w₁,..., w_σ∉ V such that ℋ ∪ w₁,..., w_σ is a sum hypergraph.
Keywords: hypergraphs, sum number, vertex labelling
@article{DMGT_2000_20_1_a6,
     author = {Teichert, Hanns-Martin},
     title = {Classes of hypergraphs with sum number one},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a6/}
}
TY  - JOUR
AU  - Teichert, Hanns-Martin
TI  - Classes of hypergraphs with sum number one
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 93
EP  - 103
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a6/
LA  - en
ID  - DMGT_2000_20_1_a6
ER  - 
%0 Journal Article
%A Teichert, Hanns-Martin
%T Classes of hypergraphs with sum number one
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 93-103
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a6/
%G en
%F DMGT_2000_20_1_a6
Teichert, Hanns-Martin. Classes of hypergraphs with sum number one. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 93-103. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a6/

[1] C. Berge, Hypergraphs (North Holland, Amsterdam-New York-Oxford-Tokyo, 1989).

[2] D. Bergstrand, F. Harary, K. Hodges, G. Jennings, L. Kuklinski and J. Wiener, The Sum Number of a Complete Graph, Bull. Malaysian Math. Soc. (Second Series) 12 (1989) 25-28.

[3] M.N. Ellingham, Sum graphs from trees, Ars Combin. 35 (1993) 335-349.

[4] F. Harary, Sum Graphs and Difference Graphs, Congressus Numerantium 72 (1990) 101-108.

[5] F. Harary, Sum Graphs over all the integers, Discrete Math. 124 (1994)99-105, doi: 10.1016/0012-365X(92)00054-U.

[6] N. Hartsfield and W.F. Smyth, The Sum Number of Complete Bipartite Graphs, in: R. Rees, ed., Graphs and Matrices (Marcel Dekker, New York, 1992) 205-211.

[7] N. Hartsfield and W.F. Smyth, A family of sparse graphs with large sum number, Discrete Math. 141 (1995) 163-171, doi: 10.1016/0012-365X(93)E0196-B.

[8] M. Miller, Slamin, J. Ryan, W.F. Smyth, Labelling Wheels for Minimum Sum Number, J. Comb. Math. and Comb. Comput. 28 (1998) 289-297.

[9] M. Sonntag and H.-M. Teichert, Sum numbers of hypertrees, Discrete Math. 214 (2000) 285-290, doi: 10.1016/S0012-365X(99)00307-6.

[10] M. Sonntag and H.-M. Teichert, On the sum number and integral sum number of hypertrees and complete hypergraphs, Proc. 3rd Krakow Conf. on Graph Theory (1997), to appear.

[11] H.-M. Teichert, The sum number of d-partite complete hypergraphs, Discuss. Math. Graph Theory 19 (1999) 79-91, doi: 10.7151/dmgt.1087.