Some news about the independence number of a graph
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 71-79.

Voir la notice de l'article provenant de la source Library of Science

For a finite undirected graph G on n vertices some continuous optimization problems taken over the n-dimensional cube are presented and it is proved that their optimum values equal the independence number of G.
Keywords: graph, independence
@article{DMGT_2000_20_1_a4,
     author = {Harant, Jochen},
     title = {Some news about the independence number of a graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {71--79},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a4/}
}
TY  - JOUR
AU  - Harant, Jochen
TI  - Some news about the independence number of a graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 71
EP  - 79
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a4/
LA  - en
ID  - DMGT_2000_20_1_a4
ER  - 
%0 Journal Article
%A Harant, Jochen
%T Some news about the independence number of a graph
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 71-79
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a4/
%G en
%F DMGT_2000_20_1_a4
Harant, Jochen. Some news about the independence number of a graph. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 71-79. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a4/

[1] E. Bertram, P. Horak, Lower bounds on the independence number, Geombinatorics, (V) 3 (1996) 93-98.

[2] R. Boppana, M.M. Halldorsson, Approximating maximum independent sets by excluding subgraphs, BIT 32 (1992) 180-196, doi: 10.1007/BF01994876.

[3] Y. Caro, New results on the independence number (Technical Report, Tel-Aviv University, 1979).

[4] S. Fajtlowicz, On the size of independent sets in graphs, in: Proc. 9th S-E Conf. on Combinatorics, Graph Theory and Computing (Boca Raton 1978) 269-274.

[5] S. Fajtlowicz, Independence, clique size and maximum degree, Combinatorica 4 (1984) 35-38, doi: 10.1007/BF02579154.

[6] M.R. Garey, D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (W.H. Freeman and Company, San Francisco, 1979).

[7] M.M. Halldorsson, J. Radhakrishnan, Greed is good: Approximating independent sets in sparse and bounded-degree graphs, Algorithmica 18 (1997) 145-163, doi: 10.1007/BF02523693.

[8] J. Harant, A lower bound on the independence number of a graph, Discrete Math. 188 (1998) 239-243, doi: 10.1016/S0012-365X(98)00048-X.

[9] J. Harant, A. Pruchnewski, M. Voigt, On dominating sets and independent sets of graphs, Combinatorics, Probability and Computing 8 (1999) 547-553, doi: 10.1017/S0963548399004034.

[10] J. Harant, I. Schiermeyer, On the independence number of a graph in terms of order and size, submitted.

[11] T.S. Motzkin, E.G. Straus, Maxima for graphs and a new proof of a theorem of Turan, Canad. J. Math. 17 (1965) 533-540, doi: 10.4153/CJM-1965-053-6.

[12] O. Murphy, Lower bounds on the stability number of graphs computed in terms of degrees, Discrete Math. 90 (1991) 207-211, doi: 10.1016/0012-365X(91)90357-8.

[13] S.M. Selkow, The independence number of graphs in terms of degrees, Discrete Math. 122 (1993) 343-348, doi: 10.1016/0012-365X(93)90307-F.

[14] S.M. Selkow, A probabilistic lower bound on the independence number of graphs, Discrete Math. 132 (1994) 363-365, doi: 10.1016/0012-365X(93)00102-B.

[15] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983) 83-87, doi: 10.1016/0012-365X(83)90273-X.

[16] J.B. Shearer, A note on the independence number of triangle-free graphs, II, J. Combin. Theory (B) 53 (1991) 300-307, doi: 10.1016/0095-8956(91)90080-4.

[17] V.K. Wei, A lower bound on the stability number of a simple graph (Bell Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981).