Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2000_20_1_a11, author = {Mih\'ok, Peter}, title = {Unique factorization theorem}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {143--154}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a11/} }
Mihók, Peter. Unique factorization theorem. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 143-154. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a11/
[1] D. Achlioptas, J.I. Brown, D.G. Corneil and M.S.O. Molloy, The existence of uniquely -G colourable graphs, Discrete Math. 179 (1998) 1-11, doi: 10.1016/S0012-365X(97)00022-8.
[2] A. Berger, Reducible properties have infinitely many minimal forbidden subgraphs, manuscript.
[3] B. Bollobás and A.G. Thomason, Hereditary and monotone properties of graphs, in: R.L. Graham and J. Nesetril, eds., The mathematics of Paul Erdős, II, Algorithms and Combinatorics vol. 14 (Springer-Verlag, 1997), 70-78.
[4] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[5] I. Broere, J. Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mountains Math. Publications 18 (1999) 79-87.
[6] E.J. Cockayne, Color clasess for r-graphs, Canad. Math. Bull. 15 (3) (1972) 349-354, doi: 10.4153/CMB-1972-063-2.
[7] R.L. Graham, M. Grötschel and L. Lovász, Handbook of combinatorics (Elsevier Science B.V., Amsterdam, 1995).
[8] T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995).
[9] J. Kratochvíl, P. Mihók, Hom-properties are uniquely factorizable into irreducible factors, Discrete Math. 213 (2000) 189-194, doi: 10.1016/S0012-365X(99)00179-X.
[10] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985), 49-58.
[11] P. Mihók and R. Vasky, On the factorization of reducible properties of graphs into irreducible factors, Discuss. Math. Graph Theory 15 (1995) 195-203, doi: 10.7151/dmgt.1017.
[12] P. Mihók, Reducible properties and uniquely partitionable graphs, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 49 (1999) 213-218.
[13] P. Mihók, G. Semanišin and R. Vasky, Additive and Hereditary Properties of Graphs are Uniquely Factorizable into Irreducible Factors, J. Graph Theory 33 (2000) 44-53, doi: 10.1002/(SICI)1097-0118(200001)33:144::AID-JGT5>3.0.CO;2-O
[14] G. Semanišin, On generating sets of induced-hereditary properties, manuscript.