The strong isometric dimension of finite reflexive graphs
Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 23-38

Voir la notice de l'article provenant de la source Library of Science

The strong isometric dimension of a reflexive graph is related to its injective hull: both deal with embedding reflexive graphs in the strong product of paths. We give several upper and lower bounds for the strong isometric dimension of general graphs; the exact strong isometric dimension for cycles and hypercubes; and the isometric dimension for trees is found to within a factor of two.
Keywords: isometric, embedding, strong product, injective hull, paths, distance, metric
@article{DMGT_2000_20_1_a1,
     author = {Fitzpatrick, Shannon and Nowakowski, Richard},
     title = {The strong isometric dimension of finite reflexive graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {23--38},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a1/}
}
TY  - JOUR
AU  - Fitzpatrick, Shannon
AU  - Nowakowski, Richard
TI  - The strong isometric dimension of finite reflexive graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2000
SP  - 23
EP  - 38
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a1/
LA  - en
ID  - DMGT_2000_20_1_a1
ER  - 
%0 Journal Article
%A Fitzpatrick, Shannon
%A Nowakowski, Richard
%T The strong isometric dimension of finite reflexive graphs
%J Discussiones Mathematicae. Graph Theory
%D 2000
%P 23-38
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a1/
%G en
%F DMGT_2000_20_1_a1
Fitzpatrick, Shannon; Nowakowski, Richard. The strong isometric dimension of finite reflexive graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 23-38. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a1/