Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2000_20_1_a1, author = {Fitzpatrick, Shannon and Nowakowski, Richard}, title = {The strong isometric dimension of finite reflexive graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {23--38}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a1/} }
TY - JOUR AU - Fitzpatrick, Shannon AU - Nowakowski, Richard TI - The strong isometric dimension of finite reflexive graphs JO - Discussiones Mathematicae. Graph Theory PY - 2000 SP - 23 EP - 38 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a1/ LA - en ID - DMGT_2000_20_1_a1 ER -
Fitzpatrick, Shannon; Nowakowski, Richard. The strong isometric dimension of finite reflexive graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 23-38. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a1/
[1] M. Aigner and M. Fromme, A game of cops and robbers, Discrete Appl. Math. 8 (1984) 1-12. MR 85f:90124.
[2] T. Andreae, On a pursuit game played on graphs for which the minor is excluded, J. Combin. Theory (B) 41 (1986) 37-47. MR 87i:05179.
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs (second edition, Wadsworth, 1986).
[4] S.L. Fitzpatrick, A polynomial-time algorithm for determining if idim(G) ≤ 2,preprint 1998.
[5] S.L. Fitzpatrick and R.J. Nowakowski, Copnumber of graphs with strong isometric dimension two, to appear in Ars Combinatoria.
[6] J.R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964) 65-76. MR 32#431.
[7] E.M. Jawhari, D. Misane and M. Pouzet, Retracts: graphs and ordered sets from the metric point of view, Contemp. Math. 57 (1986) 175-226. MR 88i:54022.
[8] E.M. Jawhari, M. Pouzet and I. Rival, A classification of reflexive graphs: the use of 'holes', Canad. J. Math. 38 (1986) 1299-1328. MR 88j:05038.
[9] S. Neufeld, The Game of Cops and Robber, M.Sc Thesis, Dalhousie University, 1990.
[10] R. Nowakowski and I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 223-234. MR 84k:05057.
[11] R. Nowakowski and I. Rival, A fixed edge theorem for graphs with loops, J. Graph Theory 3 (1979) 339-350. MR 80j:05098.
[12] R. Nowakowski and P. Winkler, Vertex to vertex pursuit in a graph, Discrete Math. 43 (1983) 235-239. MR 84d:05138.
[13] E. Pesch, Minimal extensions of graphs to absolute retracts, J. Graph Theory 11 (1987) 585-598. MR 89g:05102
[14] A. Quilliot, These d'Etat (Université de Paris VI, 1983).
[15] P. Winkler, The metric structure of graphs: theory and applications (London Math. Soc. Lecture Note Ser., 123, Cambridge Univ. Press, Cambridge-New York, 1987). MR 88h:05090.