Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2000_20_1_a0, author = {{\L}azuka, Ewa and \.Zurawiecki, Jerzy}, title = {Colouring of cycles in the de {Bruijn} graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {5--21}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a0/} }
Łazuka, Ewa; Żurawiecki, Jerzy. Colouring of cycles in the de Bruijn graphs. Discussiones Mathematicae. Graph Theory, Tome 20 (2000) no. 1, pp. 5-21. http://geodesic.mathdoc.fr/item/DMGT_2000_20_1_a0/
[1] M. Cohn and A. Lempel, Cycle decomposition by disjoint transpositions, J. Combin. Theory (A) 13 (1972) 83-89, doi: 10.1016/0097-3165(72)90010-6.
[2] E.D. Erdmann, Complexity measures for testing binary keystreams, PhD thesis, Stanford University, 1993.
[3] H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms, SIAM Rev. 24 (1982) 195-221, doi: 10.1137/1024041.
[4] E.R. Hauge and T. Helleseth, De Bruijn sequences, irreducible codes and cyclotomy, Discrete Math. 159 (1996) 143-154, doi: 10.1016/0012-365X(96)00106-9.
[5] C.J.A. Jansen, Investigations on nonlinear strimcipher systems: Construction and evaluation methods, PhD thesis, Technical University of Delft, 1989.
[6] M. Łatko, Design of the maximal factors in de Bruijn graphs, (in Polish), PhD thesis, UMCS, 1987.
[7] E. Łazuka and J. Żurawiecki, The lower bounds of a feedback function, Demonstratio Math. 29 (1996) 191-203.
[8] R.A. Rueppel, Analysis and design of stream ciphers (Springer-Verlag, 1986).
[9] P. Wlaź and J. Żurawiecki, An algorithm for generating M-sequences using universal circuit matrix, Ars Combinatoria 41 (1995) 203-216.
[10] J. Żurawiecki, Elementary k-iterative systems (the binary case), J. Inf. Process. Cybern. EIK 24 1/2 (1988) 51-64.
[11] J. Żurawiecki, Locally reducible iterative systems, Demonstratio Math. 23 (1990) 961-983.