A note on kernels and solutions in digraphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 237-240.

Voir la notice de l'article provenant de la source Library of Science

For given nonnegative integers k,s an upper bound on the minimum number of vertices of a strongly connected digraph with exactly k kernels and s solutions is presented.
Keywords: kernel of digraph, solution of digraph
@article{DMGT_1999_19_2_a9,
     author = {Harminc, Mat\'u\v{s} and Sot\'ak, Roman},
     title = {A note on kernels and solutions in digraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {237--240},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a9/}
}
TY  - JOUR
AU  - Harminc, Matúš
AU  - Soták, Roman
TI  - A note on kernels and solutions in digraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 237
EP  - 240
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a9/
LA  - en
ID  - DMGT_1999_19_2_a9
ER  - 
%0 Journal Article
%A Harminc, Matúš
%A Soták, Roman
%T A note on kernels and solutions in digraphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 237-240
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a9/
%G en
%F DMGT_1999_19_2_a9
Harminc, Matúš; Soták, Roman. A note on kernels and solutions in digraphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 237-240. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a9/

[1] M. Behzad and F. Harary, Which directed graphs have a solution?, Math. Slovaca 27 (1977) 37-42.

[2] V.V. Belov, E.M. Vorobjov and V.E. Shatalov, Graph Theory (Vyshshaja Shkola, Moskva, 1976). (Russian)

[3] C. Berge, Graphs and Hypergraphs (Dunod, Paris, 1970). (French)

[4] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).

[5] F. Harary, R.Z. Norman and D. Cartwright, Structural Models (John Wiley Sons, Inc., New York - London - Sydney, 1965).

[6] M. Harminc, Kernel and solution numbers of digraphs, Acta Univ. M. Belii 6 (1998) 15-20.

[7] M. Harminc and T. Olejnikova, Binary operations on digraphs and solutions, Zb. ved. prac, VST, Košice (1984) 29-42. (Slovak)

[8] L. Lovasz, Combinatorial Problems and Exercises (Akademiai Kiado, Budapest, 1979).

[9] R.G. Nigmatullin, The largest number of kernels in graphs with n vertices, Kazan. Gos. Univ. Ucen. Zap. 130 (1970) kn.3, 75-82. (Russian)