Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1999_19_2_a9, author = {Harminc, Mat\'u\v{s} and Sot\'ak, Roman}, title = {A note on kernels and solutions in digraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {237--240}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a9/} }
Harminc, Matúš; Soták, Roman. A note on kernels and solutions in digraphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 237-240. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a9/
[1] M. Behzad and F. Harary, Which directed graphs have a solution?, Math. Slovaca 27 (1977) 37-42.
[2] V.V. Belov, E.M. Vorobjov and V.E. Shatalov, Graph Theory (Vyshshaja Shkola, Moskva, 1976). (Russian)
[3] C. Berge, Graphs and Hypergraphs (Dunod, Paris, 1970). (French)
[4] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[5] F. Harary, R.Z. Norman and D. Cartwright, Structural Models (John Wiley Sons, Inc., New York - London - Sydney, 1965).
[6] M. Harminc, Kernel and solution numbers of digraphs, Acta Univ. M. Belii 6 (1998) 15-20.
[7] M. Harminc and T. Olejnikova, Binary operations on digraphs and solutions, Zb. ved. prac, VST, Košice (1984) 29-42. (Slovak)
[8] L. Lovasz, Combinatorial Problems and Exercises (Akademiai Kiado, Budapest, 1979).
[9] R.G. Nigmatullin, The largest number of kernels in graphs with n vertices, Kazan. Gos. Univ. Ucen. Zap. 130 (1970) kn.3, 75-82. (Russian)