On-line ranking number for cycles and paths
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 175-197
Cet article a éte moissonné depuis la source Library of Science
A k-ranking of a graph G is a colouring φ:V(G) → 1,...,k such that any path in G with endvertices x,y fulfilling φ(x) = φ(y) contains an internal vertex z with φ(z) > φ(x). On-line ranking number χ*_r(G) of a graph G is a minimum k such that G has a k-ranking constructed step by step if vertices of G are coming and coloured one by one in an arbitrary order; when colouring a vertex, only edges between already present vertices are known. Schiermeyer, Tuza and Voigt proved that χ*_r(Pₙ) 3log₂n for n ≥ 2. Here we show that χ*_r(Pₙ) ≤ 2⎣log₂n⎦+1. The same upper bound is obtained for χ*_r(Cₙ),n ≥ 3.
Keywords:
ranking number, on-line vertex colouring, cycle, path
@article{DMGT_1999_19_2_a5,
author = {Bruoth, Erik and Hor\v{n}\'ak, Mirko},
title = {On-line ranking number for cycles and paths},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {175--197},
year = {1999},
volume = {19},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a5/}
}
Bruoth, Erik; Horňák, Mirko. On-line ranking number for cycles and paths. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 175-197. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a5/
[1] M. Katchalski, W. McCuaig and S. Seager, Ordered colourings, Discrete Math. 142 (1995) 141-154, doi: 10.1016/0012-365X(93)E0216-Q.
[2] C.E. Leiserson, Area-efficient graph layouts (for VLSI), in: Proc. 21st Annu. IEEE Symp. on Foundations of Computer Science (1980) 270-281.
[3] J.W.H. Liu, The role of elimination trees in sparse factorization, SIAM J. Matrix Analysis and Appl. 11 (1990) 134-172, doi: 10.1137/0611010.
[4] D.C. Llewelyn, C. Tovey and M. Trick, Local optimization on graphs, Discrete Appl. Math. 23 (1989) 157-178, doi: 10.1016/0166-218X(89)90025-5.
[5] I. Schiermeyer, Zs. Tuza and M. Voigt, On-line rankings of graphs, submitted.