Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1999_19_2_a3, author = {Borowiecki, Mieczys{\l}aw and Mih\'ok, Peter and Tuza, Zsolt and Voigt, M.}, title = {Remarks on the existence of uniquely partitionable planar graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {159--166}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a3/} }
TY - JOUR AU - Borowiecki, Mieczysław AU - Mihók, Peter AU - Tuza, Zsolt AU - Voigt, M. TI - Remarks on the existence of uniquely partitionable planar graphs JO - Discussiones Mathematicae. Graph Theory PY - 1999 SP - 159 EP - 166 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a3/ LA - en ID - DMGT_1999_19_2_a3 ER -
%0 Journal Article %A Borowiecki, Mieczysław %A Mihók, Peter %A Tuza, Zsolt %A Voigt, M. %T Remarks on the existence of uniquely partitionable planar graphs %J Discussiones Mathematicae. Graph Theory %D 1999 %P 159-166 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a3/ %G en %F DMGT_1999_19_2_a3
Borowiecki, Mieczysław; Mihók, Peter; Tuza, Zsolt; Voigt, M. Remarks on the existence of uniquely partitionable planar graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 159-166. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a3/
[1] C. Bazgan, M. Santha and Zs. Tuza, On the approximation of finding a(nother) Hamiltonian cycle in cubic Hamiltonian graphs, in: Proc. STACS'98, Lecture Notes in Computer Science 1373 (Springer-Verlag, 1998) 276-286. Extended version in the J. Algorithms 31 (1999) 249-268.
[2] C. Berge, Theorie des Graphes, Paris, 1958.
[3] C. Berge, Graphs and Hypergraphs, North-Holland, 1973.
[4] B. Bollobás and A.G. Thomason, Uniquely partitionable graphs, J. London Math. Soc. 16 (1977) 403-410, doi: 10.1112/jlms/s2-16.3.403.
[5] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[6] I. Broere and J. Bucko, Divisibility in additive hereditary graph properties and uniquely partitionable graphs, Tatra Mountains 18 (1999) 79-87.
[7] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043.
[8] J. Bucko and J. Ivanco, Uniquely partitionable planar graphs with respect to properties having a forbidden tree, Discuss. Math. Graph Theory 19 (1999) 71-78, doi: 10.7151/dmgt.1086.
[9] J. Bucko, P. Mihók and M. Voigt Uniquely partitionable planar graphs, Discrete Math. 191 (1998) 149-158, doi: 10.1016/S0012-365X(98)00102-2.
[10] G. Chartrand and J.P. Geller, Uniquely colourable planar graphs, J. Combin. Theory 6 (1969) 271-278, doi: 10.1016/S0021-9800(69)80087-6.
[11] F. Harary, S.T. Hedetniemi and R.W. Robinson, Uniquely colourable graphs, J. Combin. Theory 6 (1969) 264-270; MR39#99.
[12] P. Mihók, Reducible properties and uniquely partitionable graphs, in: Contemporary Trends in Discrete Mathematics, From DIMACS and Dimatia to the Future, Proceedings of the DIMATIA-DIMACS Conference, Stirin May 1997, Ed. R.L. Graham, J. Kratochvil, J. Ne setril, F.S. Roberts, DIMACS Series in Discrete Mathematics, Volume 49, AMS, 213-218.
[13] P. Mihók, G. Semanišin and R. Vasky, Hereditary additive properties are uniquely factorizable into irreducible factors, J. Graph Theory 33 (2000)44-53, doi: 10.1002/(SICI)1097-0118(200001)33:144::AID-JGT5>3.0.CO;2-O
[14] J. Mitchem, Uniquely k-arborable graphs, Israel J. Math. 10 (1971) 17-25; MR46#81.