On cyclically embeddable graphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 241-248.

Voir la notice de l'article provenant de la source Library of Science

An embedding of a simple graph G into its complement G̅ is a permutation σ on V(G) such that if an edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G). In this note we consider some families of embeddable graphs such that the corresponding permutation is cyclic.
Keywords: packing of graphs, unicyclic graphs, cyclic permutation
@article{DMGT_1999_19_2_a10,
     author = {Wo\'zniak, Mariusz},
     title = {On cyclically embeddable graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {241--248},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a10/}
}
TY  - JOUR
AU  - Woźniak, Mariusz
TI  - On cyclically embeddable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 241
EP  - 248
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a10/
LA  - en
ID  - DMGT_1999_19_2_a10
ER  - 
%0 Journal Article
%A Woźniak, Mariusz
%T On cyclically embeddable graphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 241-248
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a10/
%G en
%F DMGT_1999_19_2_a10
Woźniak, Mariusz. On cyclically embeddable graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 2, pp. 241-248. http://geodesic.mathdoc.fr/item/DMGT_1999_19_2_a10/

[1] B. Bollobás, Extremal Graph Theory (Academic Press, London, 1978).

[2] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory 25 (B) (1978) 105-124.

[3] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.

[4] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996.

[5] R.J. Faudree, C.C. Rousseau, R.H. Schelp and S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31:106 (1981) 53-62.

[6] T. Gangopadhyay, Packing graphs in their complements, Discrete Math. 186 (1998) 117-124, doi: 10.1016/S0012-365X(97)00186-6.

[7] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142.

[8] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory 25 (B) (1978) 295-302.

[9] S. Schuster, Fixed-point-free embeddings of graphs in their complements, Internat. J. Math. Math. Sci. 1 (1978) 335-338, doi: 10.1155/S0161171278000356.

[10] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0.

[11] M. Woźniak, Packing three trees, Discrete Math. 150 (1996) 393-402, doi: 10.1016/0012-365X(95)00204-A.

[12] M. Woźniak, Packing of Graphs, Dissertationes Mathematicae 362 (1997) pp.78.

[13] H.P. Yap, Some Topics in Graph Theory (London Mathematical Society, Lectures Notes Series 108, Cambridge University Press, Cambridge 1986).

[14] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.