Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1999_19_1_a7, author = {Cockayne, E. and Mynhardt, C.}, title = {On 1-dependent ramsey numbers for graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {93--110}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a7/} }
Cockayne, E.; Mynhardt, C. On 1-dependent ramsey numbers for graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 93-110. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a7/
[1] R.C. Brewster, E.J. Cockayne and C.M. Mynhardt, Irredundant Ramsey numbers for graphs, J. Graph Theory 13 (1989) 283-290, doi: 10.1002/jgt.3190130303.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs (Third Edition) (Chapman and Hall, London, 1996).
[3] E.J. Cockayne, Generalized irredundance in graphs: Hereditary properties and Ramsey numbers, submitted.
[4] E.J. Cockayne, G. MacGillivray and J. Simmons, CO-irredundant Ramsey numbers for graphs, submitted.
[5] E.J. Cockayne, C.M. Mynhardt and J. Simmons, The CO-irredundant Ramsey number t(4,7), submitted.
[6] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[7] H. Harborth and I Mengersen, All Ramsey numbers for five vertices and seven or eight edges, Discrete Math. 73 (1988/89) 91-98, doi: 10.1016/0012-365X(88)90136-7.
[8] C.J. Jayawardene and C.C. Rousseau, The Ramsey numbers for a quadrilateral versus all graphs on six vertices, to appear.
[9] G. MacGillivray, personal communication, 1998.
[10] C.M. Mynhardt, Irredundant Ramsey numbers for graphs: a survey, Congr. Numer. 86 (1992) 65-79.
[11] S.P. Radziszowski, Small Ramsey numbers, Electronic J. Comb. 1 (1994) DS1.
[12] F.P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930) 264-286, doi: 10.1112/plms/s2-30.1.264.
[13] J. Simmons, CO-irredundant Ramsey numbers for graphs, Master's dissertation, University of Victoria, Canada, 1998.
[14] Zhou Huai Lu, The Ramsey number of an odd cycle with respect to a wheel, J. Math. - Wuhan 15 (1995) 119-120.