The sum number of d-partite complete hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 79-91

Voir la notice de l'article provenant de la source Library of Science

A d-uniform hypergraph is a sum hypergraph iff there is a finite S ⊆ IN⁺ such that is isomorphic to the hypergraph ⁺_d(S) = (V,), where V = S and = v₁,...,v_d: (i ≠ j ⇒ v_i ≠ v_j)∧ ∑^d_i=1 v_i ∈ S. For an arbitrary d-uniform hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices w₁,...,w_σ ∉ V such that ∪ w₁,..., w_σ is a sum hypergraph.
Keywords: sum number, sum hypergraphs, d-partite complete hypergraph
@article{DMGT_1999_19_1_a6,
     author = {Teichert, Hanns-Martin},
     title = {The sum number of d-partite complete hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a6/}
}
TY  - JOUR
AU  - Teichert, Hanns-Martin
TI  - The sum number of d-partite complete hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 79
EP  - 91
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a6/
LA  - en
ID  - DMGT_1999_19_1_a6
ER  - 
%0 Journal Article
%A Teichert, Hanns-Martin
%T The sum number of d-partite complete hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 79-91
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a6/
%G en
%F DMGT_1999_19_1_a6
Teichert, Hanns-Martin. The sum number of d-partite complete hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 79-91. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a6/