The sum number of d-partite complete hypergraphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 79-91.

Voir la notice de l'article provenant de la source Library of Science

A d-uniform hypergraph is a sum hypergraph iff there is a finite S ⊆ IN⁺ such that is isomorphic to the hypergraph ⁺_d(S) = (V,), where V = S and = v₁,...,v_d: (i ≠ j ⇒ v_i ≠ v_j)∧ ∑^d_i=1 v_i ∈ S. For an arbitrary d-uniform hypergraph the sum number σ = σ() is defined to be the minimum number of isolated vertices w₁,...,w_σ ∉ V such that ∪ w₁,..., w_σ is a sum hypergraph.
Keywords: sum number, sum hypergraphs, d-partite complete hypergraph
@article{DMGT_1999_19_1_a6,
     author = {Teichert, Hanns-Martin},
     title = {The sum number of d-partite complete hypergraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {79--91},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a6/}
}
TY  - JOUR
AU  - Teichert, Hanns-Martin
TI  - The sum number of d-partite complete hypergraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 79
EP  - 91
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a6/
LA  - en
ID  - DMGT_1999_19_1_a6
ER  - 
%0 Journal Article
%A Teichert, Hanns-Martin
%T The sum number of d-partite complete hypergraphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 79-91
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a6/
%G en
%F DMGT_1999_19_1_a6
Teichert, Hanns-Martin. The sum number of d-partite complete hypergraphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 79-91. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a6/

[1] C. Berge, Hypergraphs, (North Holland, Amsterdam-New York-Oxford-Tokyo, 1989).

[2] D. Bergstrand, F. Harary, K. Hodges. G. Jennings, L. Kuklinski and J. Wiener, The Sum Number of a Complete Graph, Bull. Malaysian Math. Soc. (Second Series) 12 (1989) 25-28.

[3] Z. Chen, Harary's conjectures on integral sum graphs, Discrete Math. 160 (1996) 241-244, doi: 10.1016/0012-365X(95)00163-Q.

[4] Z. Chen, Integral sum graphs from identification, Discrete Math. 181 (1998) 77-90, doi: 10.1016/S0012-365X(97)00046-0.

[5] M.N. Ellingham, Sum graphs from trees, Ars Comb. 35 (1993) 335-349.

[6] F. Harary, Sum Graphs and Difference Graphs, Congressus Numerantium 72 (1990) 101-108.

[7] F. Harary, Sum Graphs over all the integers, Discrete Math. 124 (1994) 99-105, doi: 10.1016/0012-365X(92)00054-U.

[8] N. Hartsfield and W.F. Smyth, The Sum Number of Complete Bipartite Graphs, in: R. Rees, ed., Graphs and Matrices (Marcel Dekker, New York, 1992) 205-211.

[9] M. Miller, J. Ryan, Slamin, Integral sum numbers of $H_{2,n}$ and $K_{m,m}$, 1997 (to appear).

[10] A. Sharary, Integral sum graphs from complete graphs, cycles and wheels, Arab. Gulf J. Sci. Res. 14 (1) (1996) 1-14.

[11] A. Sharary, Integral sum graphs from caterpillars, 1996 (to appear).

[12] M. Sonntag and H.-M. Teichert, The sum number of hypertrees, 1997 (to appear).

[13] M. Sonntag and H.-M. Teichert, On the sum number and integral sum number of hypertrees and complete hypergraphs, Proc. 3rd Kraków Conf. on Graph Theory, 1997 (to appear).