Uniquely partitionable planar graphs with respect to properties having a forbidden tree
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 71-78
Cet article a éte moissonné depuis la source Library of Science
Let ₁, ₂ be graph properties. A vertex (₁,₂)-partition of a graph G is a partition V₁,V₂ of V(G) such that for i = 1,2 the induced subgraph G[V_i] has the property _i. A property ℜ = ₁∘₂ is defined to be the set of all graphs having a vertex (₁,₂)-partition. A graph G ∈ ₁∘₂ is said to be uniquely (₁,₂)-partitionable if G has exactly one vertex (₁,₂)-partition. In this note, we show the existence of uniquely partitionable planar graphs with respect to hereditary additive properties having a forbidden tree.
Keywords:
uniquely partitionable planar graphs, forbidden graphs
@article{DMGT_1999_19_1_a5,
author = {Bucko, Jozef and Ivan\v{c}o, Jaroslav},
title = {Uniquely partitionable planar graphs with respect to properties having a forbidden tree},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {71--78},
year = {1999},
volume = {19},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a5/}
}
TY - JOUR AU - Bucko, Jozef AU - Ivančo, Jaroslav TI - Uniquely partitionable planar graphs with respect to properties having a forbidden tree JO - Discussiones Mathematicae. Graph Theory PY - 1999 SP - 71 EP - 78 VL - 19 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a5/ LA - en ID - DMGT_1999_19_1_a5 ER -
Bucko, Jozef; Ivančo, Jaroslav. Uniquely partitionable planar graphs with respect to properties having a forbidden tree. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a5/
[1] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discuss. Math. Graph Theory 17 (1997) 103-114, doi: 10.7151/dmgt.1043.
[2] J. Bucko, P. Mihók and M. Voigt, Uniquely partitionable planar graphs, Discrete Math. 191 (1998) 149-158, doi: 10.1016/S0012-365X(98)00102-2.
[3] M. Borowiecki, J. Bucko, P. Mihók, Z. Tuza and M. Voigt, Remarks on the existence of uniquely partitionable planar graphs, 13. Workshop on Discrete Optimization, Burg, abstract, 1998.
[4] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58.