Distance perfectness of graphs
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 31-43.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we propose a generalization of well known kinds of perfectness of graphs in terms of distances between vertices. We introduce generalizations of α-perfect, χ-perfect, strongly perfect graphs and we establish the relations between them. Moreover, we give sufficient conditions for graphs to be perfect in generalized sense. Other generalizations of perfectness are given in papers [3] and [7].
Keywords: perfect graphs, strongly perfect graphs, chromatic number
@article{DMGT_1999_19_1_a2,
     author = {W{\l}och, Andrzej},
     title = {Distance perfectness of graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a2/}
}
TY  - JOUR
AU  - Włoch, Andrzej
TI  - Distance perfectness of graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 31
EP  - 43
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a2/
LA  - en
ID  - DMGT_1999_19_1_a2
ER  - 
%0 Journal Article
%A Włoch, Andrzej
%T Distance perfectness of graphs
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 31-43
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a2/
%G en
%F DMGT_1999_19_1_a2
Włoch, Andrzej. Distance perfectness of graphs. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a2/

[1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.

[2] C. Berge and P. Duchet, Strongly perfect graphs, Ann. Discrete Math. 21 (1984) 57-61.

[3] A.L. Cai and D. Corneil, A generalization of perfect graphs - i-perfect graphs, J. Graph Theory 23 (1996) 87-103, doi: 10.1002/(SICI)1097-0118(199609)23:187::AID-JGT10>3.0.CO;2-H

[4] F. Kramer and H. Kramer, Un Probléme de coloration des sommets d'un gráphe, C.R. Acad. Sc. Paris, 268 Serie A (1969) 46-48.

[5] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267, doi: 10.1016/0012-365X(72)90006-4.

[6] F. Maffray and M. Preissmann, Perfect graphs with no P₅ and no K₅, Graphs and Combin. 10 (1994) 173-184, doi: 10.1007/BF02986662.

[7] H. Müller, On edge perfectness and class of bipartite graphs, Discrete Math. 148 (1996) 159-187.

[8] G. Ravindra, Meyniel's graphs are strongly perfect, Ann. Discrete Math. 21 (1984) 145-148.