Extremal problems for forbidden pairs that imply hamiltonicity
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 13-29.

Voir la notice de l'article provenant de la source Library of Science

Let C denote the claw K_1,3, N the net (a graph obtained from a K₃ by attaching a disjoint edge to each vertex of the K₃), W the wounded (a graph obtained from a K₃ by attaching an edge to one vertex and a disjoint path P₃ to a second vertex), and Z_i the graph consisting of a K₃ with a path of length i attached to one vertex. For k a fixed positive integer and n a sufficiently large integer, the minimal number of edges and the smallest clique in a k-connected graph G of order n that is CY-free (does not contain an induced copy of C or of Y) will be determined for Y a connected subgraph of either P₆, N, W, or Z₃. It should be noted that the pairs of graphs CY are precisely those forbidden pairs that imply that any 2-connected graph of order at least 10 is hamiltonian. These extremal numbers give one measure of the relative strengths of the forbidden subgraph conditions that imply a graph is hamiltonian.
@article{DMGT_1999_19_1_a1,
     author = {Faudree, Ralph and Gy\'arf\'as, Andr\'as},
     title = {Extremal problems for forbidden pairs that imply hamiltonicity},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {13--29},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a1/}
}
TY  - JOUR
AU  - Faudree, Ralph
AU  - Gyárfás, András
TI  - Extremal problems for forbidden pairs that imply hamiltonicity
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 13
EP  - 29
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a1/
LA  - en
ID  - DMGT_1999_19_1_a1
ER  - 
%0 Journal Article
%A Faudree, Ralph
%A Gyárfás, András
%T Extremal problems for forbidden pairs that imply hamiltonicity
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 13-29
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a1/
%G en
%F DMGT_1999_19_1_a1
Faudree, Ralph; Gyárfás, András. Extremal problems for forbidden pairs that imply hamiltonicity. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a1/

[1] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity, Ph.D Thesis, Memphis State University, 1991.

[2] J.A. Bondy and U.S.R. Murty, Graph Theory With Applications (Macmillan, London and Elsevier, New York, 1976).

[3] G. Chartrand and L. Lesniak, Graphs and Digraphs (2nd ed., Wadsworth and Brooks/Cole, Belmont, 1986).

[4] G. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.

[5] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, On Cycle Complete Graph Ramsey Numbers, J. Graph Theory 2 (1978) 53-64, doi: 10.1002/jgt.3190020107.

[6] R.J. Faudree, Forbidden Subgraphs and Hamiltonian Properties - A Survey, Congressus Numerantium 116 (1996) 33-52.

[7] R.J. Faudree, E. Flandrin and Z. Ryjácek, Claw-free Graphs - A Survey, Discrete Math. 164 (1997) 87-147, doi: 10.1016/S0012-365X(96)00045-3.

[8] R.J. Faudree and R.J. Gould, Characterizing Forbidden Pairs for Hamiltonian Properties, Discrete Math. 173 (1977) 45-60, doi: 10.1016/S0012-365X(96)00147-1.

[9] J.K. Kim, The Ramsey number R(3,t) has order of magnitude t²/logt, Random Structures Algorithms 7 (1995) 173-207, doi: 10.1002/rsa.3240070302.

[10] O. Ore, Note on Hamiltonian Circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.