Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1999_19_1_a1, author = {Faudree, Ralph and Gy\'arf\'as, Andr\'as}, title = {Extremal problems for forbidden pairs that imply hamiltonicity}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {13--29}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a1/} }
TY - JOUR AU - Faudree, Ralph AU - Gyárfás, András TI - Extremal problems for forbidden pairs that imply hamiltonicity JO - Discussiones Mathematicae. Graph Theory PY - 1999 SP - 13 EP - 29 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a1/ LA - en ID - DMGT_1999_19_1_a1 ER -
Faudree, Ralph; Gyárfás, András. Extremal problems for forbidden pairs that imply hamiltonicity. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 13-29. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a1/
[1] P. Bedrossian, Forbidden subgraph and minimum degree conditions for hamiltonicity, Ph.D Thesis, Memphis State University, 1991.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory With Applications (Macmillan, London and Elsevier, New York, 1976).
[3] G. Chartrand and L. Lesniak, Graphs and Digraphs (2nd ed., Wadsworth and Brooks/Cole, Belmont, 1986).
[4] G. Dirac, Some Theorems on Abstract Graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[5] P. Erdős, R.J. Faudree, C.C. Rousseau and R.H. Schelp, On Cycle Complete Graph Ramsey Numbers, J. Graph Theory 2 (1978) 53-64, doi: 10.1002/jgt.3190020107.
[6] R.J. Faudree, Forbidden Subgraphs and Hamiltonian Properties - A Survey, Congressus Numerantium 116 (1996) 33-52.
[7] R.J. Faudree, E. Flandrin and Z. Ryjácek, Claw-free Graphs - A Survey, Discrete Math. 164 (1997) 87-147, doi: 10.1016/S0012-365X(96)00045-3.
[8] R.J. Faudree and R.J. Gould, Characterizing Forbidden Pairs for Hamiltonian Properties, Discrete Math. 173 (1977) 45-60, doi: 10.1016/S0012-365X(96)00147-1.
[9] J.K. Kim, The Ramsey number R(3,t) has order of magnitude t²/logt, Random Structures Algorithms 7 (1995) 173-207, doi: 10.1002/rsa.3240070302.
[10] O. Ore, Note on Hamiltonian Circuits, Amer. Math. Monthly 67 (1960) 55, doi: 10.2307/2308928.