Cyclically 5-edge connected non-bicritical critical snarks
Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 5-11.

Voir la notice de l'article provenant de la source Library of Science

Snarks are bridgeless cubic graphs with chromatic index χ' = 4. A snark G is called critical if χ'(G-v,w) = 3, for any two adjacent vertices v and w.
Keywords: cubic graphs, snarks, edge colorings
@article{DMGT_1999_19_1_a0,
     author = {Gr\"unewald, Stefan and Steffen, Eckhard},
     title = {Cyclically 5-edge connected non-bicritical critical snarks},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a0/}
}
TY  - JOUR
AU  - Grünewald, Stefan
AU  - Steffen, Eckhard
TI  - Cyclically 5-edge connected non-bicritical critical snarks
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1999
SP  - 5
EP  - 11
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a0/
LA  - en
ID  - DMGT_1999_19_1_a0
ER  - 
%0 Journal Article
%A Grünewald, Stefan
%A Steffen, Eckhard
%T Cyclically 5-edge connected non-bicritical critical snarks
%J Discussiones Mathematicae. Graph Theory
%D 1999
%P 5-11
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a0/
%G en
%F DMGT_1999_19_1_a0
Grünewald, Stefan; Steffen, Eckhard. Cyclically 5-edge connected non-bicritical critical snarks. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a0/

[1] D. Blanusa, Problem ceteriju boja (The problem of four colors), Hrvatsko Prirodoslovno Drustvo Glasnik Math.-Fiz. Astr. Ser. II, 1 (1946) 31-42.

[2] G. Brinkmann and E. Steffen, Snarks and Reducibility, Ars Combin. 50 (1998) 292-296.

[3] P.J. Cameron, A.G. Chetwynd and J.J. Watkins, Decomposition of Snarks,J. Graph Theory 11 (1987) 13-19, doi: 10.1002/jgt.3190110104.

[4] M.K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory (B) 31 (1981) 282-291, doi: 10.1016/0095-8956(81)90030-7.

[5] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844.

[6] R. Nedela and M. Skoviera, Decompositions and Reductions of Snarks, J. Graph Theory 22 (1996) 253-279, doi: 10.1002/(SICI)1097-0118(199607)22:3253::AID-JGT6>3.0.CO;2-L

[7] M. Preissmann, C-minimal Snarks, Annals Discrete Math. 17 (1983) 559-565.

[8] M. Skoviera, personal communication.

[9] E. Steffen, Critical Non-bicritical Snarks, Graphs and Combinatorics (to appear).

[10] E. Steffen, Classifications and Characterizations of Snarks, Discrete Math. 188 (1998) 183-203, doi: 10.1016/S0012-365X(97)00255-0.

[11] E. Steffen, On bicritical Snarks, Math. Slovaca (to appear).

[12] J.J. Watkins, Snarks, Ann. New York Acad. Sci. 576 (1989) 606-622, doi: 10.1111/j.1749-6632.1989.tb16441.x.

[13] J.J. Watkins, R.J. Wilson, A Survey of Snarks, in: Y. Alavi et al. (eds.), Graph Theory, Combinatorics and Applications (Wiley, New York, 1991) 1129-1144.