Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1999_19_1_a0, author = {Gr\"unewald, Stefan and Steffen, Eckhard}, title = {Cyclically 5-edge connected non-bicritical critical snarks}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {5--11}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {1999}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a0/} }
TY - JOUR AU - Grünewald, Stefan AU - Steffen, Eckhard TI - Cyclically 5-edge connected non-bicritical critical snarks JO - Discussiones Mathematicae. Graph Theory PY - 1999 SP - 5 EP - 11 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a0/ LA - en ID - DMGT_1999_19_1_a0 ER -
Grünewald, Stefan; Steffen, Eckhard. Cyclically 5-edge connected non-bicritical critical snarks. Discussiones Mathematicae. Graph Theory, Tome 19 (1999) no. 1, pp. 5-11. http://geodesic.mathdoc.fr/item/DMGT_1999_19_1_a0/
[1] D. Blanusa, Problem ceteriju boja (The problem of four colors), Hrvatsko Prirodoslovno Drustvo Glasnik Math.-Fiz. Astr. Ser. II, 1 (1946) 31-42.
[2] G. Brinkmann and E. Steffen, Snarks and Reducibility, Ars Combin. 50 (1998) 292-296.
[3] P.J. Cameron, A.G. Chetwynd and J.J. Watkins, Decomposition of Snarks,J. Graph Theory 11 (1987) 13-19, doi: 10.1002/jgt.3190110104.
[4] M.K. Goldberg, Construction of class 2 graphs with maximum vertex degree 3, J. Combin. Theory (B) 31 (1981) 282-291, doi: 10.1016/0095-8956(81)90030-7.
[5] R. Isaacs, Infinite families of non-trivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221-239, doi: 10.2307/2319844.
[6] R. Nedela and M. Skoviera, Decompositions and Reductions of Snarks, J. Graph Theory 22 (1996) 253-279, doi: 10.1002/(SICI)1097-0118(199607)22:3253::AID-JGT6>3.0.CO;2-L
[7] M. Preissmann, C-minimal Snarks, Annals Discrete Math. 17 (1983) 559-565.
[8] M. Skoviera, personal communication.
[9] E. Steffen, Critical Non-bicritical Snarks, Graphs and Combinatorics (to appear).
[10] E. Steffen, Classifications and Characterizations of Snarks, Discrete Math. 188 (1998) 183-203, doi: 10.1016/S0012-365X(97)00255-0.
[11] E. Steffen, On bicritical Snarks, Math. Slovaca (to appear).
[12] J.J. Watkins, Snarks, Ann. New York Acad. Sci. 576 (1989) 606-622, doi: 10.1111/j.1749-6632.1989.tb16441.x.
[13] J.J. Watkins, R.J. Wilson, A Survey of Snarks, in: Y. Alavi et al. (eds.), Graph Theory, Combinatorics and Applications (Wiley, New York, 1991) 1129-1144.