2-halvable complete 4-partite graphs
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 233-242
Voir la notice de l'article provenant de la source Library of Science
A complete 4-partite graph K_m₁,m₂,m₃,m₄ is called d-halvable if it can be decomposed into two isomorphic factors of diameter d. In the class of graphs K_m₁,m₂,m₃,m₄ with at most one odd part all d-halvable graphs are known. In the class of biregular graphs K_m₁,m₂,m₃,m₄ with four odd parts (i.e., the graphs K_m,m,m,n and K_m,m,n,n) all d-halvable graphs are known as well, except for the graphs K_m,m,n,n when d = 2 and n ≠ m. We prove that such graphs are 2-halvable iff n,m ≥ 3. We also determine a new class of non-halvable graphs K_m₁,m₂,m₃,m₄ with three or four different odd parts.
Keywords:
Graph decompositions, isomorphic factors, selfcomplementary graphs
@article{DMGT_1998_18_2_a9,
author = {Fron\v{c}ek, Dalibor},
title = {2-halvable complete 4-partite graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {233--242},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1998},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a9/}
}
Fronček, Dalibor. 2-halvable complete 4-partite graphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 233-242. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a9/