Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1998_18_2_a9, author = {Fron\v{c}ek, Dalibor}, title = {2-halvable complete 4-partite graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {233--242}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a9/} }
Fronček, Dalibor. 2-halvable complete 4-partite graphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 233-242. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a9/
[1] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs and Digraphs (Prindle, Weber Schmidt, Boston, 1979).
[2] J. Bosák, A. Rosa and Š. Znám, On decompositions of complete graphs into factors with given diameters, in: Theory of Graphs, Proc. Coll. Tihany 1966 (Akadémiai Kiadó, Budapest, 1968) 37-56.
[3] D. Fronček, Decompositions of complete bipartite and tripartite graphs into selfcomplementary factors with finite diameters, Graphs. Combin. 12 (1996) 305-320, doi: 10.1007/BF01858463.
[4] D. Fronček, Decompositions of complete multipartite graphs into selfcomplementary factors with finite diameters, Australas. J. Combin. 13 (1996) 61-74.
[5] D. Fronček, Decompositions of complete multipartite graphs into disconnected selfcomplementary factors, Utilitas Mathematica 53 (1998) 201-216.
[6] D. Fronček and J. Širáň, Halving complete 4-partite graphs, Ars Combinatoria (to appear).
[7] T. Gangopadhyay, Range of diameters in a graph and its r-partite complement, Ars Combinatoria 18 (1983) 61-80.
[8] P. Híc and D. Palumbíny, Isomorphic factorizations of complete graphs into factors with a given diameter, Math. Slovaca 37 (1987) 247-254.
[9] A. Kotzig and A. Rosa, Decomposition of complete graphs into isomorphic factors with a given diameter, Bull. London Math. Soc. 7 (1975) 51-57, doi: 10.1112/blms/7.1.51.
[10] D. Palumbíny, Factorizations of complete graphs into isomorphic factors with a given diameter, Zborník Pedagogickej Fakulty v Nitre, Matematika 2 (1982) 21-32.
[11] P. Tomasta, Decompositions of graphs and hypergraphs into isomorphic factors with a given diameter, Czechoslovak Math. J. 27 (1977) 598-608.
[12] E. Tomová, Decomposition of complete bipartite graphs into factors with given diameters, Math. Slovaca 27 (1977) 113-128.