On hereditary properties of composition graphs
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 183-195.

Voir la notice de l'article provenant de la source Library of Science

The composition graph of a family of n+1 disjoint graphs H_i:0 ≤ i ≤ n is the graph H obtained by substituting the n vertices of H₀ respectively by the graphs H₁,H₂,...,Hₙ. If H has some hereditary property P, then necessarily all its factors enjoy the same property. For some sort of graphs it is sufficient that all factors H_i: 0 ≤ i ≤ n have a certain common P to endow H with this P. For instance, it is known that the composition graph of a family of perfect graphs is also a perfect graph (B. Bollobas, 1978), and the composition graph of a family of comparability graphs is a comparability graph as well (M.C. Golumbic, 1980). In this paper we show that the composition graph of a family of co-graphs (i.e., P₄-free graphs), is also a co-graph, whereas for θ₁-perfect graphs (i.e., P₄-free and C₄-free graphs) and for threshold graphs (i.e., P₄-free, C₄-free and 2K₂-free graphs), the corresponding factors H_i:0 ≤ i ≤ n have to be equipped with some special structure.
Keywords: composition graph, co-graphs, θ₁-perfect graphs, threshold graphs
@article{DMGT_1998_18_2_a4,
     author = {Levit, Vadim and Mandrescu, Eugen},
     title = {On hereditary properties of composition graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a4/}
}
TY  - JOUR
AU  - Levit, Vadim
AU  - Mandrescu, Eugen
TI  - On hereditary properties of composition graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 183
EP  - 195
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a4/
LA  - en
ID  - DMGT_1998_18_2_a4
ER  - 
%0 Journal Article
%A Levit, Vadim
%A Mandrescu, Eugen
%T On hereditary properties of composition graphs
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 183-195
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a4/
%G en
%F DMGT_1998_18_2_a4
Levit, Vadim; Mandrescu, Eugen. On hereditary properties of composition graphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 183-195. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a4/

[1] B. Bollobás, Extremal graph theory (Academic Press, London, 1978).

[2] B. Bollobás and A.G. Thomason, Hereditary and monotone properties of graphs, in: R.L. Graham and J. Nešetřil, eds., The Mathematics of Paul Erdős, II, Algorithms and Combinatorics 14 (Springer-Verlag, 1997) 70-78.

[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli ed., Advances in Graph Theory (Vishwa Intern. Publication, Gulbarga,1991) 41-68.

[4] M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanišin, A Survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.

[5] P. Borowiecki and J. Ivančo, P-bipartitions of minor hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 89-93, doi: 10.7151/dmgt.1041.

[6] V. Chvátal and P.L. Hammer, Set-packing and threshold graphs, Res. Report CORR 73-21, University Waterloo, 1973.

[7] S. Foldes and P.L. Hammer, Split graphs, in: F. Hoffman et al., eds., Proc. 8th Conf. on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, Louisiana, 1977) 311-315.

[8] M.C. Golumbic, Trivially perfect graphs, Discrete Math. 24 (1978) 105-107, doi: 10.1016/0012-365X(78)90178-4.

[9] M.C. Golumbic, Algorithmic graph theory and perfect graphs (Academic Press, London, 1980).

[10] J.L. Jolivet, Sur le joint d' une famille de graphes, Discrete Math. 5 (1973) 145-158, doi: 10.1016/0012-365X(73)90106-4.

[11] N.V.R. Mahadev and U.N. Peled, Threshold graphs and related topics (North-Holland, Amsterdam, 1995).

[12] E. Mandrescu, Triangulated graph products, Anal. Univ. Galatzi (1991) 37-44.

[13] K.R. Parthasarathy, S.A. Choudum and G. Ravindra, Line-clique cover number of a graph, Proc. Indian Nat. Sci. Acad., Part A 41 (3) (1975) 281-293.

[14] U.N. Peled, Matroidal graphs, Discrete Math. 20 (1977) 263-286.

[15] A. Pnueli, A. Lempel and S. Even, Transitive orientation of graphs and identification of permutation graphs, Canad. J. Math. 23 (1971) 160-175, doi: 10.4153/CJM-1971-016-5.

[16] G. Ravindra and K.R. Parthasarathy, Perfect Product Graphs, Discrete Math. 20 (1977) 177-186, doi: 10.1016/0012-365X(77)90056-5.

[17] G. Sabidussi, The composition of graphs, Duke Math. J. 26 (1959) 693-698, doi: 10.1215/S0012-7094-59-02667-5.