A conjecture on cycle-pancyclism in tournaments
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 243-251.

Voir la notice de l'article provenant de la source Library of Science

Let T be a hamiltonian tournament with n vertices and γ a hamiltonian cycle of T. In previous works we introduced and studied the concept of cycle-pancyclism to capture the following question: What is the maximum intersection with γ of a cycle of length k? More precisely, for a cycle Cₖ of length k in T we denote I_γ (Cₖ) = |A(γ)∩A(Cₖ)|, the number of arcs that γ and Cₖ have in common. Let f(k,T,γ) = maxI_γ(Cₖ)|Cₖ ⊂ T and f(n,k) = minf(k,T,γ)|T is a hamiltonian tournament with n vertices, and γ a hamiltonian cycle of T. In previous papers we gave a characterization of f(n,k). In particular, the characterization implies that f(n,k) ≥ k-4.
Keywords: Tournaments, pancyclism, cycle-pancyclism
@article{DMGT_1998_18_2_a10,
     author = {Galeana-S\'anchez, Hortensia and Rajsbaum, Sergio},
     title = {A conjecture on cycle-pancyclism in tournaments},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {243--251},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a10/}
}
TY  - JOUR
AU  - Galeana-Sánchez, Hortensia
AU  - Rajsbaum, Sergio
TI  - A conjecture on cycle-pancyclism in tournaments
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 243
EP  - 251
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a10/
LA  - en
ID  - DMGT_1998_18_2_a10
ER  - 
%0 Journal Article
%A Galeana-Sánchez, Hortensia
%A Rajsbaum, Sergio
%T A conjecture on cycle-pancyclism in tournaments
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 243-251
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a10/
%G en
%F DMGT_1998_18_2_a10
Galeana-Sánchez, Hortensia; Rajsbaum, Sergio. A conjecture on cycle-pancyclism in tournaments. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a10/

[1] B. Alspach, Cycles of each length in regular tournaments, Canadian Math. Bull. 10 (1967) 283-286, doi: 10.4153/CMB-1967-028-6.

[2] J. Bang-Jensen and G. Gutin, Paths, Trees and Cycles in Tournaments, Congressus Numer. 115 (1996) 131-170.

[3] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs Digraphs (Prindle, Weber Schmidt International Series, 1979).

[4] J.C. Bermond and C. Thomasen, Cycles in digraphs: A survey, J. Graph Theory 5 (1981) 1-43, doi: 10.1002/jgt.3190050102.

[5] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments I, Graphs and Combinatorics 11 (1995) 233-243, doi: 10.1007/BF01793009.

[6] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments II, Graphs and Combinatorics 12 (1996) 9-16, doi: 10.1007/BF01858440.

[7] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments III, Graphs and Combinatorics 13 (1997) 57-63, doi: 10.1007/BF01202236.

[8] J.W. Moon, On Subtournaments of a Tournament, Canad. Math. Bull. 9 (1966) 297-301, doi: 10.4153/CMB-1966-038-7.

[9] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).

[10] J.W. Moon, On k-cyclic and Pancyclic Arcs in Strong Tournaments, J. Combinatorics, Information and System Sci. 19 (1994) 207-214.

[11] D.F. Robinson and L.R. Foulds, Digraphs: Theory and Techniques (Gordon and Breach Science Publishing, 1980).

[12] Z.-S. Wu, k.-M. Zhang and Y. Zou, A Necessary and Sufficient Condition for Arc-pancyclicity of Tournaments, Sci. Sinica 8 (1981) 915-919.