Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1998_18_2_a10, author = {Galeana-S\'anchez, Hortensia and Rajsbaum, Sergio}, title = {A conjecture on cycle-pancyclism in tournaments}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {243--251}, publisher = {mathdoc}, volume = {18}, number = {2}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a10/} }
TY - JOUR AU - Galeana-Sánchez, Hortensia AU - Rajsbaum, Sergio TI - A conjecture on cycle-pancyclism in tournaments JO - Discussiones Mathematicae. Graph Theory PY - 1998 SP - 243 EP - 251 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a10/ LA - en ID - DMGT_1998_18_2_a10 ER -
Galeana-Sánchez, Hortensia; Rajsbaum, Sergio. A conjecture on cycle-pancyclism in tournaments. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 243-251. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a10/
[1] B. Alspach, Cycles of each length in regular tournaments, Canadian Math. Bull. 10 (1967) 283-286, doi: 10.4153/CMB-1967-028-6.
[2] J. Bang-Jensen and G. Gutin, Paths, Trees and Cycles in Tournaments, Congressus Numer. 115 (1996) 131-170.
[3] M. Behzad, G. Chartrand and L. Lesniak-Foster, Graphs Digraphs (Prindle, Weber Schmidt International Series, 1979).
[4] J.C. Bermond and C. Thomasen, Cycles in digraphs: A survey, J. Graph Theory 5 (1981) 1-43, doi: 10.1002/jgt.3190050102.
[5] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments I, Graphs and Combinatorics 11 (1995) 233-243, doi: 10.1007/BF01793009.
[6] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments II, Graphs and Combinatorics 12 (1996) 9-16, doi: 10.1007/BF01858440.
[7] H. Galeana-Sánchez and S. Rajsbaum, Cycle-Pancyclism in Tournaments III, Graphs and Combinatorics 13 (1997) 57-63, doi: 10.1007/BF01202236.
[8] J.W. Moon, On Subtournaments of a Tournament, Canad. Math. Bull. 9 (1966) 297-301, doi: 10.4153/CMB-1966-038-7.
[9] J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).
[10] J.W. Moon, On k-cyclic and Pancyclic Arcs in Strong Tournaments, J. Combinatorics, Information and System Sci. 19 (1994) 207-214.
[11] D.F. Robinson and L.R. Foulds, Digraphs: Theory and Techniques (Gordon and Breach Science Publishing, 1980).
[12] Z.-S. Wu, k.-M. Zhang and Y. Zou, A Necessary and Sufficient Condition for Arc-pancyclicity of Tournaments, Sci. Sinica 8 (1981) 915-919.