Short cycles of low weight in normal plane maps with minimum degree 5
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 159-164.

Voir la notice de l'article provenant de la source Library of Science

In this note, precise upper bounds are determined for the minimum degree-sum of the vertices of a 4-cycle and a 5-cycle in a plane triangulation with minimum degree 5: w(C₄) ≤ 25 and w(C₅) ≤ 30. These hold because a normal plane map with minimum degree 5 must contain a 4-star with w(K_1,4) ≤ 30. These results answer a question posed by Kotzig in 1979 and recent questions of Jendrol' and Madaras.
Keywords: planar graphs, plane triangulation
@article{DMGT_1998_18_2_a1,
     author = {Borodin, Oleg and Woodall, Douglas},
     title = {Short cycles of low weight in normal plane maps with minimum degree 5},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {159--164},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a1/}
}
TY  - JOUR
AU  - Borodin, Oleg
AU  - Woodall, Douglas
TI  - Short cycles of low weight in normal plane maps with minimum degree 5
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 159
EP  - 164
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a1/
LA  - en
ID  - DMGT_1998_18_2_a1
ER  - 
%0 Journal Article
%A Borodin, Oleg
%A Woodall, Douglas
%T Short cycles of low weight in normal plane maps with minimum degree 5
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 159-164
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a1/
%G en
%F DMGT_1998_18_2_a1
Borodin, Oleg; Woodall, Douglas. Short cycles of low weight in normal plane maps with minimum degree 5. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 2, pp. 159-164. http://geodesic.mathdoc.fr/item/DMGT_1998_18_2_a1/

[1] O.V. Borodin, Solution of Kotzig's and Grünbaum's problems on the separability of a cycle in a planar graph, Matem. Zametki 46 (5) (1989) 9-12. (in Russian)

[2] O.V. Borodin and D.R. Woodall, Vertices of degree 5 in plane triangulations (manuscript, 1994).

[3] S. Jendrol' and T. Madaras, On light subgraphs in plane graphs of minimal degree five, Discussiones Math. Graph Theory 16 (1996) 207-217, doi: 10.7151/dmgt.1035.

[4] A. Kotzig, From the theory of eulerian polyhedra, Mat. Cas. 13 (1963) 20-34. (in Russian)

[5] A. Kotzig, Extremal polyhedral graphs, Ann. New York Acad. Sci. 319 (1979) 569-570.