Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1998_18_1_a9, author = {Broere, Izak and Dorfling, Michael and Dunbar, Jean and Frick, Marietjie}, title = {A path(ological) partition problem}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {113--125}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a9/} }
TY - JOUR AU - Broere, Izak AU - Dorfling, Michael AU - Dunbar, Jean AU - Frick, Marietjie TI - A path(ological) partition problem JO - Discussiones Mathematicae. Graph Theory PY - 1998 SP - 113 EP - 125 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a9/ LA - en ID - DMGT_1998_18_1_a9 ER -
Broere, Izak; Dorfling, Michael; Dunbar, Jean; Frick, Marietjie. A path(ological) partition problem. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a9/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038.
[3] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graph, Discussiones Mathematicae Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058.
[4] G. Chartrand, D.P. Geller and S.T. Hedetniemi, A generalization of the chromatic number, Proc. Camb. Phil. Soc. 64 (1968) 265-271, doi: 10.1017/S0305004100042808.
[5] G. Chartrand and L. Lesniak, Graphs and Digraphs, second edition (Wadsworth Brooks/Cole, Monterey, 1986).
[6] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81, doi: 10.1112/plms/s3-2.1.69.
[7] P. Hajnal, Graph partitions (in Hungarian), Thesis, supervised by L. Lovász, J.A. University, Szeged, 1984.
[8] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209.
[9] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982), 173-177 (Teubner-Texte Math., 59, 1983).
[10] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238.
[11] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).
[12] M. Stiebitz, Decomposing graphs under degree constraints, J. Graph Theory 23 (1996) 321-324, doi: 10.1002/(SICI)1097-0118(199611)23:3321::AID-JGT12>3.0.CO;2-H
[13] J. Vronka, Vertex sets of graphs with prescribed properties (in Slovak), Thesis, supervised by P. Mihók, P.J. Šafárik University, Košice, 1986.