A path(ological) partition problem
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 113-125

Voir la notice de l'article provenant de la source Library of Science

Let τ(G) denote the number of vertices in a longest path of the graph G and let k₁ and k₂ be positive integers such that τ(G) = k₁ + k₂. The question at hand is whether the vertex set V(G) can be partitioned into two subsets V₁ and V₂ such that τ(G[V₁] ) ≤ k₁ and τ(G[V₂] ) ≤ k₂. We show that several classes of graphs have this partition property.
Keywords: vertex partition, τ-partitionable, decomposable graph
@article{DMGT_1998_18_1_a9,
     author = {Broere, Izak and Dorfling, Michael and Dunbar, Jean and Frick, Marietjie},
     title = {A path(ological) partition problem},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {113--125},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a9/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Dorfling, Michael
AU  - Dunbar, Jean
AU  - Frick, Marietjie
TI  - A path(ological) partition problem
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 113
EP  - 125
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a9/
LA  - en
ID  - DMGT_1998_18_1_a9
ER  - 
%0 Journal Article
%A Broere, Izak
%A Dorfling, Michael
%A Dunbar, Jean
%A Frick, Marietjie
%T A path(ological) partition problem
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 113-125
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a9/
%G en
%F DMGT_1998_18_1_a9
Broere, Izak; Dorfling, Michael; Dunbar, Jean; Frick, Marietjie. A path(ological) partition problem. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 113-125. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a9/