The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 99-111.

Voir la notice de l'article provenant de la source Library of Science

In this note, all chromatic equivalence classes for 2-connected 3-chromatic graphs with five triangles and cyclomatic number six are described. New families of chromatically unique graphs of order n are presented for each n ≥ 8. This is a generalization of a result stated in [5]. Moreover, a proof for the conjecture posed in [5] is given.
Keywords: chromatically equivalent graphs, chromatic polynomial, chromatically unique graphs, cyclomatic number
@article{DMGT_1998_18_1_a8,
     author = {Bielak, Halina},
     title = {The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {99--111},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a8/}
}
TY  - JOUR
AU  - Bielak, Halina
TI  - The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 99
EP  - 111
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a8/
LA  - en
ID  - DMGT_1998_18_1_a8
ER  - 
%0 Journal Article
%A Bielak, Halina
%T The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 99-111
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a8/
%G en
%F DMGT_1998_18_1_a8
Bielak, Halina. The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 99-111. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a8/

[1] C.Y. Chao and E.G. Whitehead Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177, doi: 10.1016/0012-365X(79)90107-9.

[2] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285, doi: 10.1007/BF01787578.

[3] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69, doi: 10.1016/0012-365X(91)90471-D.

[4] F. Harary, Graph Theory (Reading, 1969).

[5] N-Z. Li and E.G. Whitehead Jr., The chromaticity of certain graphs with five triangles, Discrete Math. 122 (1993) 365-372, doi: 10.1016/0012-365X(93)90312-H.

[6] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.