The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 99-111
Cet article a éte moissonné depuis la source Library of Science
In this note, all chromatic equivalence classes for 2-connected 3-chromatic graphs with five triangles and cyclomatic number six are described. New families of chromatically unique graphs of order n are presented for each n ≥ 8. This is a generalization of a result stated in [5]. Moreover, a proof for the conjecture posed in [5] is given.
Keywords:
chromatically equivalent graphs, chromatic polynomial, chromatically unique graphs, cyclomatic number
@article{DMGT_1998_18_1_a8,
author = {Bielak, Halina},
title = {The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {99--111},
year = {1998},
volume = {18},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a8/}
}
TY - JOUR AU - Bielak, Halina TI - The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six JO - Discussiones Mathematicae. Graph Theory PY - 1998 SP - 99 EP - 111 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a8/ LA - en ID - DMGT_1998_18_1_a8 ER -
%0 Journal Article %A Bielak, Halina %T The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six %J Discussiones Mathematicae. Graph Theory %D 1998 %P 99-111 %V 18 %N 1 %U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a8/ %G en %F DMGT_1998_18_1_a8
Bielak, Halina. The chromaticity of a family of 2-connected 3-chromatic graphs with five triangles and cyclomatic number six. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 99-111. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a8/
[1] C.Y. Chao and E.G. Whitehead Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177, doi: 10.1016/0012-365X(79)90107-9.
[2] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285, doi: 10.1007/BF01787578.
[3] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69, doi: 10.1016/0012-365X(91)90471-D.
[4] F. Harary, Graph Theory (Reading, 1969).
[5] N-Z. Li and E.G. Whitehead Jr., The chromaticity of certain graphs with five triangles, Discrete Math. 122 (1993) 365-372, doi: 10.1016/0012-365X(93)90312-H.
[6] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.