Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1998_18_1_a5, author = {Bielak, Halina}, title = {Equivalent classes for {K₃-gluings} of wheels}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {73--84}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a5/} }
Bielak, Halina. Equivalent classes for K₃-gluings of wheels. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 73-84. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a5/
[1] C.Y. Chao and E.G.Whitehead, Jr., On chromatic equivalence of graphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131, doi: 10.1007/BFb0070369.
[2] C.Y. Chao and E.G. Whitehead, Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177, doi: 10.1016/0012-365X(79)90107-9.
[3] F. Harary, Graph Theory (Reading, 1969).
[4] K.M. Koh and B.H. Goh, Two classes of chromatically unique graphs, Discrete Math. 82 (1990) 13-24, doi: 10.1016/0012-365X(90)90041-F.
[5] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285, doi: 10.1007/BF01787578.
[6] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69, doi: 10.1016/0012-365X(91)90471-D.
[7] B. Loerinc, Chromatic uniqueness of the generalized θ-graph, Discrete Math. 23 (1978) 313-316, doi: 10.1016/0012-365X(78)90012-2.
[8] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.
[9] S-J. Xu and N-Z. Li, The chromaticity of wheels, Discrete Math. 51 (1984)207-212, doi: 10.1016/0012-365X(84)90072-4.