Equivalent classes for K₃-gluings of wheels
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 73-84.

Voir la notice de l'article provenant de la source Library of Science

In this paper, the chromaticity of K₃-gluings of two wheels is studied. For each even integer n ≥ 6 and each odd integer 3 ≤ q ≤ [n/2] all K₃-gluings of wheels W_q+2 and W_n-q+2 create an χ-equivalent class.
Keywords: chromatically equivalent graphs, chromatic polynomial, chromatically unique graphs, wheels
@article{DMGT_1998_18_1_a5,
     author = {Bielak, Halina},
     title = {Equivalent classes for {K₃-gluings} of wheels},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {73--84},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a5/}
}
TY  - JOUR
AU  - Bielak, Halina
TI  - Equivalent classes for K₃-gluings of wheels
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 73
EP  - 84
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a5/
LA  - en
ID  - DMGT_1998_18_1_a5
ER  - 
%0 Journal Article
%A Bielak, Halina
%T Equivalent classes for K₃-gluings of wheels
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 73-84
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a5/
%G en
%F DMGT_1998_18_1_a5
Bielak, Halina. Equivalent classes for K₃-gluings of wheels. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 73-84. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a5/

[1] C.Y. Chao and E.G.Whitehead, Jr., On chromatic equivalence of graphs, in: Y. Alavi and D.R. Lick, eds., Theory and Applications of Graphs, Lecture Notes in Math. 642 (Springer, Berlin, 1978) 121-131, doi: 10.1007/BFb0070369.

[2] C.Y. Chao and E.G. Whitehead, Jr., Chromatically unique graphs, Discrete Math. 27 (1979) 171-177, doi: 10.1016/0012-365X(79)90107-9.

[3] F. Harary, Graph Theory (Reading, 1969).

[4] K.M. Koh and B.H. Goh, Two classes of chromatically unique graphs, Discrete Math. 82 (1990) 13-24, doi: 10.1016/0012-365X(90)90041-F.

[5] K.M. Koh and C.P. Teo, The search for chromatically unique graphs, Graphs and Combinatorics 6 (1990) 259-285, doi: 10.1007/BF01787578.

[6] K.M. Koh and C.P. Teo, The chromatic uniqueness of certain broken wheels, Discrete Math. 96 (1991) 65-69, doi: 10.1016/0012-365X(91)90471-D.

[7] B. Loerinc, Chromatic uniqueness of the generalized θ-graph, Discrete Math. 23 (1978) 313-316, doi: 10.1016/0012-365X(78)90012-2.

[8] R.C. Read, An introduction to chromatic polynomials, J. Combin. Theory 4 (1968) 52-71, doi: 10.1016/S0021-9800(68)80087-0.

[9] S-J. Xu and N-Z. Li, The chromaticity of wheels, Discrete Math. 51 (1984)207-212, doi: 10.1016/0012-365X(84)90072-4.