The leafage of a chordal graph
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 23-48.

Voir la notice de l'article provenant de la source Library of Science

The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - 1/2 lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.
Keywords: chordal graph, subtree intersection representation, leafage
@article{DMGT_1998_18_1_a2,
     author = {Lin, In-Jen and McKee, Terry and West, Douglas},
     title = {The leafage of a chordal graph},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {23--48},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a2/}
}
TY  - JOUR
AU  - Lin, In-Jen
AU  - McKee, Terry
AU  - West, Douglas
TI  - The leafage of a chordal graph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 23
EP  - 48
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a2/
LA  - en
ID  - DMGT_1998_18_1_a2
ER  - 
%0 Journal Article
%A Lin, In-Jen
%A McKee, Terry
%A West, Douglas
%T The leafage of a chordal graph
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 23-48
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a2/
%G en
%F DMGT_1998_18_1_a2
Lin, In-Jen; McKee, Terry; West, Douglas. The leafage of a chordal graph. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 23-48. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a2/

[1] H. Broersma, T. Kloks, D. Kratsch and H. Müller, Independent sets in asteroidal triple-free graphs, in: Proceedings of ICALP'97, P. Degano, R. Gorrieri, A. Marchetti-Spaccamela, (eds.), (Springer-Verlag, 1997), Lect. Notes Comp. Sci. 1256, 760-770.

[2] H. Broersma, T. Kloks, D. Kratsch and H. Müller, A generalization of AT-free graphs and a generic algorithm for solving triangulation problems, Memorandum No. 1385, University of Twente, Enschede, The Netherlands, 1997.

[3] P.A. Buneman, A characterization of rigid circuit graphs, Discrete Math. 9 (1974) 205-212, doi: 10.1016/0012-365X(74)90002-8.

[4] R.P. Dilworth, A decomposition theorem for partially ordered sets, Ann. Math. 51 (1950) 161-166, doi: 10.2307/1969503.

[5] R.P. Dilworth, Some combinatorial problems on partially ordered sets, in: Combinatorial Analysis (Bellman and Hall, eds.) Proc. Symp. Appl. Math. (Amer. Math. Soc 1960), 85-90.

[6] G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776.

[7] D.R. Fulkerson and O.A. Gross, Incidence matrices and interval graphs, Pac. J. Math. 15 (1965) 835-855.

[8] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory (B) 16 (1974) 47-56, doi: 10.1016/0095-8956(74)90094-X.

[9] F. Gavril, Generating the maximum spanning trees of a weighted graph, J. Algorithms 8 (1987) 592-597, doi: 10.1016/0196-6774(87)90053-8.

[10] P.C. Gilmore and A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16 (1964) 539-548, doi: 10.4153/CJM-1964-055-5.

[11] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, 1980).

[12] T. Kloks, D. Kratsch and H. Müller, Asteroidal sets in graphs, in: Proceedings of WG'97, R. Möhring, (ed.), (Springer-Verlag, 1997) Lect. Notes Comp. Sci. 1335, 229-241.

[13] T. Kloks, D. Kratsch and H. Müller, On the structure of graphs with bounded asteroidal number, Forschungsergebnisse Math/Inf/97/22, FSU Jena, Germany, 1997.

[14] B. Leclerc, Arbres et dimension des ordres, Discrete Math. 14 (1976) 69-76, doi: 10.1016/0012-365X(76)90007-8.

[15] C.B. Lekkerkerker and J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45-64.

[16] I.-J. Lin, M.K. Sen and D.B. West, Leafage of directed graphs, to appear.

[17] T.A. McKee, Subtree catch graphs, Congr. Numer. 90 (1992) 231-238.

[18] E. Prisner, Representing triangulated graphs in stars, Abh. Math. Sem. Univ. Hamburg 62 (1992) 29-41, doi: 10.1007/BF02941616.

[19] F.S. Roberts, Indifference graphs, in: Proof Techniques in Graph Theory (F. Harary, ed.), Academic Press (1969) 139-146.

[20] D.J. Rose, Triangulated graphs and the elimination process, J. Math. Ann. Appl. 32 (1970) 597-609, doi: 10.1016/0022-247X(70)90282-9.

[21] D.J. Rose, R.E. Tarjan and G.S. Leuker, Algorithmic aspects of vertex elimination on graphs, SIAM J. Comp. 5 (1976) 266-283, doi: 10.1137/0205021.

[22] Y. Shibata, On the tree representation of chordal graphs, J. Graph Theory 12 (1988) 421-428, doi: 10.1002/jgt.3190120313.

[23] J.R. Walter, Representations of chordal graphs as subtrees of a tree, J. Graph Theory 2 (1978) 265-267, doi: 10.1002/jgt.3190020311.