An inequality chain of domination parameters for trees
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 127-142

Voir la notice de l'article provenant de la source Library of Science

We prove that the smallest cardinality of a maximal packing in any tree is at most the cardinality of an R-annihilated set. As a corollary to this result we point out that a set of parameters of trees involving packing, perfect neighbourhood, R-annihilated, irredundant and dominating sets is totally ordered. The class of trees for which all these parameters are equal is described and we give an example of a tree in which most of them are distinct.
Keywords: domination, irredundance, packing, perfect neighbourhoods, annihilation
@article{DMGT_1998_18_1_a10,
     author = {Cockayne, E. and Favaron, O. and Puech, J. and Mynhardt, C.},
     title = {An inequality chain of domination parameters for trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/}
}
TY  - JOUR
AU  - Cockayne, E.
AU  - Favaron, O.
AU  - Puech, J.
AU  - Mynhardt, C.
TI  - An inequality chain of domination parameters for trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 127
EP  - 142
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/
LA  - en
ID  - DMGT_1998_18_1_a10
ER  - 
%0 Journal Article
%A Cockayne, E.
%A Favaron, O.
%A Puech, J.
%A Mynhardt, C.
%T An inequality chain of domination parameters for trees
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 127-142
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/
%G en
%F DMGT_1998_18_1_a10
Cockayne, E.; Favaron, O.; Puech, J.; Mynhardt, C. An inequality chain of domination parameters for trees. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 127-142. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/