An inequality chain of domination parameters for trees
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 127-142.

Voir la notice de l'article provenant de la source Library of Science

We prove that the smallest cardinality of a maximal packing in any tree is at most the cardinality of an R-annihilated set. As a corollary to this result we point out that a set of parameters of trees involving packing, perfect neighbourhood, R-annihilated, irredundant and dominating sets is totally ordered. The class of trees for which all these parameters are equal is described and we give an example of a tree in which most of them are distinct.
Keywords: domination, irredundance, packing, perfect neighbourhoods, annihilation
@article{DMGT_1998_18_1_a10,
     author = {Cockayne, E. and Favaron, O. and Puech, J. and Mynhardt, C.},
     title = {An inequality chain of domination parameters for trees},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/}
}
TY  - JOUR
AU  - Cockayne, E.
AU  - Favaron, O.
AU  - Puech, J.
AU  - Mynhardt, C.
TI  - An inequality chain of domination parameters for trees
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 127
EP  - 142
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/
LA  - en
ID  - DMGT_1998_18_1_a10
ER  - 
%0 Journal Article
%A Cockayne, E.
%A Favaron, O.
%A Puech, J.
%A Mynhardt, C.
%T An inequality chain of domination parameters for trees
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 127-142
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/
%G en
%F DMGT_1998_18_1_a10
Cockayne, E.; Favaron, O.; Puech, J.; Mynhardt, C. An inequality chain of domination parameters for trees. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 127-142. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/

[1] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterisation of (γ,i)-trees, (preprint).

[2] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, Packing, perfect neighbourhood, irredundant and R-annihilated sets in graphs, Austr. J. Combin. Math. (to appear).

[3] E.J. Cockayne, P.J. Grobler, S.T. Hedetniemi and A.A. McRae, What makes an irredundant set maximal?, J. Combin. Math. Combin. Comput. (to appear).

[4] E.J. Cockayne, J.H. Hattingh, S.M. Hedetniemi, S.T. Hedetniemi and A.A. McRae, Using maximality and minimality conditions to construct inequality chains, Discrete Math. 176 (1997) 43-61, doi: 10.1016/S0012-365X(96)00356-1.

[5] E.J. Cockayne, S.M. Hedetniemi, S.T. Hedetniemi and C.M. Mynhardt, Irredundant and perfect neighbourhood sets in trees, Discrete Math. (to appear).

[6] E.J. Cockayne and C.M. Mynhardt, On a conjecture concerning irredundant and perfect neighbourhood sets in graphs, J. Combin. Math. Combin. Comput. (to appear).

[7] O. Favaron and J. Puech, Irredundant and perfect neighbourhood sets in graphs and claw-free graphs, Discrete Math. (to appear).

[8] G.H. Fricke, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and M.A. Henning, Perfect neighborhoods in graphs, (preprint).

[9] B.L. Hartnell, On maximal radius two independent sets, Congr. Numer. 48 (1985) 179-182.

[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs (Marcel Dekker, 1997).

[11] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.

[12] J. Puech, Irredundant and independent perfect neighborhood sets in graphs, (preprint).

[13] J. Topp and L. Volkmann, On packing and covering numbers of graphs, Discrete Math. 96 (1991) 229-238, doi: 10.1016/0012-365X(91)90316-T.