Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1998_18_1_a10, author = {Cockayne, E. and Favaron, O. and Puech, J. and Mynhardt, C.}, title = {An inequality chain of domination parameters for trees}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {127--142}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/} }
TY - JOUR AU - Cockayne, E. AU - Favaron, O. AU - Puech, J. AU - Mynhardt, C. TI - An inequality chain of domination parameters for trees JO - Discussiones Mathematicae. Graph Theory PY - 1998 SP - 127 EP - 142 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/ LA - en ID - DMGT_1998_18_1_a10 ER -
%0 Journal Article %A Cockayne, E. %A Favaron, O. %A Puech, J. %A Mynhardt, C. %T An inequality chain of domination parameters for trees %J Discussiones Mathematicae. Graph Theory %D 1998 %P 127-142 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/ %G en %F DMGT_1998_18_1_a10
Cockayne, E.; Favaron, O.; Puech, J.; Mynhardt, C. An inequality chain of domination parameters for trees. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 127-142. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a10/
[1] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterisation of (γ,i)-trees, (preprint).
[2] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, Packing, perfect neighbourhood, irredundant and R-annihilated sets in graphs, Austr. J. Combin. Math. (to appear).
[3] E.J. Cockayne, P.J. Grobler, S.T. Hedetniemi and A.A. McRae, What makes an irredundant set maximal?, J. Combin. Math. Combin. Comput. (to appear).
[4] E.J. Cockayne, J.H. Hattingh, S.M. Hedetniemi, S.T. Hedetniemi and A.A. McRae, Using maximality and minimality conditions to construct inequality chains, Discrete Math. 176 (1997) 43-61, doi: 10.1016/S0012-365X(96)00356-1.
[5] E.J. Cockayne, S.M. Hedetniemi, S.T. Hedetniemi and C.M. Mynhardt, Irredundant and perfect neighbourhood sets in trees, Discrete Math. (to appear).
[6] E.J. Cockayne and C.M. Mynhardt, On a conjecture concerning irredundant and perfect neighbourhood sets in graphs, J. Combin. Math. Combin. Comput. (to appear).
[7] O. Favaron and J. Puech, Irredundant and perfect neighbourhood sets in graphs and claw-free graphs, Discrete Math. (to appear).
[8] G.H. Fricke, T.W. Haynes, S.M. Hedetniemi, S.T. Hedetniemi and M.A. Henning, Perfect neighborhoods in graphs, (preprint).
[9] B.L. Hartnell, On maximal radius two independent sets, Congr. Numer. 48 (1985) 179-182.
[10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs (Marcel Dekker, 1997).
[11] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.
[12] J. Puech, Irredundant and independent perfect neighborhood sets in graphs, (preprint).
[13] J. Topp and L. Volkmann, On packing and covering numbers of graphs, Discrete Math. 96 (1991) 229-238, doi: 10.1016/0012-365X(91)90316-T.