A note on uniquely embeddable graphs
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 15-21.

Voir la notice de l'article provenant de la source Library of Science

Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an embedding G into its complement [G̅]. In this note, we consider a problem concerning the uniqueness of such an embedding.
Keywords: packing of graphs
@article{DMGT_1998_18_1_a1,
     author = {Wo\'zniak, Mariusz},
     title = {A note on uniquely embeddable graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {15--21},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a1/}
}
TY  - JOUR
AU  - Woźniak, Mariusz
TI  - A note on uniquely embeddable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 15
EP  - 21
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a1/
LA  - en
ID  - DMGT_1998_18_1_a1
ER  - 
%0 Journal Article
%A Woźniak, Mariusz
%T A note on uniquely embeddable graphs
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 15-21
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a1/
%G en
%F DMGT_1998_18_1_a1
Woźniak, Mariusz. A note on uniquely embeddable graphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a1/

[1] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8.

[2] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.

[3] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996.

[4] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142.

[5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9.

[6] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0.

[7] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.