Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1998_18_1_a1, author = {Wo\'zniak, Mariusz}, title = {A note on uniquely embeddable graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {15--21}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a1/} }
Woźniak, Mariusz. A note on uniquely embeddable graphs. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 15-21. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a1/
[1] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8.
[2] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308.
[3] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996.
[4] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142.
[5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9.
[6] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0.
[7] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4.