Long cycles and neighborhood union in 1-tough graphs with large degree sums
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 5-13.

Voir la notice de l'article provenant de la source Library of Science

For a 1-tough graph G we define σ₃(G) = mind(u) + d(v) + d(w):u,v,w is an independent set of vertices and NC_σ₃-n+5(G) = max⋃_i = 1^σ₃-n+5N(v_i) : v₁, ..., v_σ₃-n+5is an independent set of vertices. We show that every 1-tough graph with σ₃(G) ≥ n contains a cycle of length at leastminn,2NC_σ₃-n+5(G)+2. This result implies some well-known results of Faßbender [2] and of Flandrin, Jung Li [6]. The main result of this paper also implies that c(G) ≥ minn,2NC₂(G)+2 where NC₂(G) = min|N(u) ∪ N(v)|:d(u,v) = 2. This strengthens a result that c(G) ≥ minn, 2NC₂(G) of Bauer, Fan and Veldman [3].
Keywords: graphs, neighborhood, toughness, cycles
@article{DMGT_1998_18_1_a0,
     author = {Hoa, Vu},
     title = {Long cycles and neighborhood union in 1-tough graphs with large degree sums},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/}
}
TY  - JOUR
AU  - Hoa, Vu
TI  - Long cycles and neighborhood union in 1-tough graphs with large degree sums
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 5
EP  - 13
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/
LA  - en
ID  - DMGT_1998_18_1_a0
ER  - 
%0 Journal Article
%A Hoa, Vu
%T Long cycles and neighborhood union in 1-tough graphs with large degree sums
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 5-13
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/
%G en
%F DMGT_1998_18_1_a0
Hoa, Vu. Long cycles and neighborhood union in 1-tough graphs with large degree sums. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/

[1] A. Bigalke and H.A. Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatsh. Mathematics 88 (1979) 195-210, doi: 10.1007/BF01295234.

[2] B. Faß, A sufficient condition on degree sums of independent triples for hamiltonian cycles in 1-tough graphs, Ars Combinatoria 33 (1992) 300-304.

[3] D. Bauer, A. Morgana, E. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Mathematics 79 (1989/90) 59-70, doi: 10.1016/0012-365X(90)90055-M.

[4] D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory, in: R. Bodendiek and R. Henn, eds., Topics in Combinatorics and Graph Theory. Festschrift in honour of Gerhard Ringel, Physica-Verlag, Heidelberg (1990) 101-110.

[5] D. Bauer, G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Mathematics 96 (1991) 33-49, doi: 10.1016/0012-365X(91)90468-H.

[6] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Mathematics 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I.

[7] H.J. Broersma, J. Van den Heuvel and H.J. Veldman, Long Cycles, Degree sums and Neighborhood Unions, Discrete Mathematics 121 (1993) 25-35, doi: 10.1016/0012-365X(93)90534-Z.

[8] J. Van den Heuvel, Degree and Toughness Condition for Cycles in Graphs, Thesis (1994) University of Twente, Enschede Niederland.