Long cycles and neighborhood union in 1-tough graphs with large degree sums
Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 5-13

Voir la notice de l'article provenant de la source Library of Science

For a 1-tough graph G we define σ₃(G) = mind(u) + d(v) + d(w):u,v,w is an independent set of vertices and NC_σ₃-n+5(G) = max⋃_i = 1^σ₃-n+5N(v_i) : v₁, ..., v_σ₃-n+5is an independent set of vertices. We show that every 1-tough graph with σ₃(G) ≥ n contains a cycle of length at leastminn,2NC_σ₃-n+5(G)+2. This result implies some well-known results of Faßbender [2] and of Flandrin, Jung Li [6]. The main result of this paper also implies that c(G) ≥ minn,2NC₂(G)+2 where NC₂(G) = min|N(u) ∪ N(v)|:d(u,v) = 2. This strengthens a result that c(G) ≥ minn, 2NC₂(G) of Bauer, Fan and Veldman [3].
Keywords: graphs, neighborhood, toughness, cycles
@article{DMGT_1998_18_1_a0,
     author = {Hoa, Vu},
     title = {Long cycles and neighborhood union in 1-tough graphs with large degree sums},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {1998},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/}
}
TY  - JOUR
AU  - Hoa, Vu
TI  - Long cycles and neighborhood union in 1-tough graphs with large degree sums
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1998
SP  - 5
EP  - 13
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/
LA  - en
ID  - DMGT_1998_18_1_a0
ER  - 
%0 Journal Article
%A Hoa, Vu
%T Long cycles and neighborhood union in 1-tough graphs with large degree sums
%J Discussiones Mathematicae. Graph Theory
%D 1998
%P 5-13
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/
%G en
%F DMGT_1998_18_1_a0
Hoa, Vu. Long cycles and neighborhood union in 1-tough graphs with large degree sums. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/