Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1998_18_1_a0, author = {Hoa, Vu}, title = {Long cycles and neighborhood union in 1-tough graphs with large degree sums}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {5--13}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {1998}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/} }
Hoa, Vu. Long cycles and neighborhood union in 1-tough graphs with large degree sums. Discussiones Mathematicae. Graph Theory, Tome 18 (1998) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/DMGT_1998_18_1_a0/
[1] A. Bigalke and H.A. Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatsh. Mathematics 88 (1979) 195-210, doi: 10.1007/BF01295234.
[2] B. Faß, A sufficient condition on degree sums of independent triples for hamiltonian cycles in 1-tough graphs, Ars Combinatoria 33 (1992) 300-304.
[3] D. Bauer, A. Morgana, E. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Mathematics 79 (1989/90) 59-70, doi: 10.1016/0012-365X(90)90055-M.
[4] D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory, in: R. Bodendiek and R. Henn, eds., Topics in Combinatorics and Graph Theory. Festschrift in honour of Gerhard Ringel, Physica-Verlag, Heidelberg (1990) 101-110.
[5] D. Bauer, G. Fan and H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, Discrete Mathematics 96 (1991) 33-49, doi: 10.1016/0012-365X(91)90468-H.
[6] E. Flandrin, H.A. Jung and H. Li, Hamiltonism, degree sum and neighborhood intersections, Discrete Mathematics 90 (1991) 41-52, doi: 10.1016/0012-365X(91)90094-I.
[7] H.J. Broersma, J. Van den Heuvel and H.J. Veldman, Long Cycles, Degree sums and Neighborhood Unions, Discrete Mathematics 121 (1993) 25-35, doi: 10.1016/0012-365X(93)90534-Z.
[8] J. Van den Heuvel, Degree and Toughness Condition for Cycles in Graphs, Thesis (1994) University of Twente, Enschede Niederland.