Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_2_a7, author = {Chartrand, Gary and Gavlas, Heather and Hevia, H\'ector and Johnson, Mark}, title = {Rotation and jump distances between graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {285--300}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a7/} }
TY - JOUR AU - Chartrand, Gary AU - Gavlas, Heather AU - Hevia, Héctor AU - Johnson, Mark TI - Rotation and jump distances between graphs JO - Discussiones Mathematicae. Graph Theory PY - 1997 SP - 285 EP - 300 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a7/ LA - en ID - DMGT_1997_17_2_a7 ER -
%0 Journal Article %A Chartrand, Gary %A Gavlas, Heather %A Hevia, Héctor %A Johnson, Mark %T Rotation and jump distances between graphs %J Discussiones Mathematicae. Graph Theory %D 1997 %P 285-300 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a7/ %G en %F DMGT_1997_17_2_a7
Chartrand, Gary; Gavlas, Heather; Hevia, Héctor; Johnson, Mark. Rotation and jump distances between graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 285-300. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a7/
[1] V. Balá, J. Koa, V. Kvasnika and M. Sekanina, A metric for graphs, asopis Pst. Mat. 111 (1986) 431-433.
[2] G. Benadé, W. Goddard, T.A. McKee and P.A. Winter, On distances between isomorphism classes of graphs, Math. Bohemica 116 (1991) 160-169.
[3] G. Chartrand, W. Goddard, M.A. Henning, L. Lesniak, H.C. Swart and C.E. Wall, Which graphs are distance graphs? Ars Combin. 29A (1990) 225-232.
[4] G. Chartrand, F. Saba and H-B Zou, Edge rotations and distance between graphs, asopis Pst. Mat. 110 (1985) 87-91.
[5] R.J. Faudree, R.H. Schelp, L. Lesniak, A. Gyárfás and J. Lehel, On the rotation distance of graphs, Discrete Math. 126 (1994) 121-135, doi: 10.1016/0012-365X(94)90258-5.
[6] E.B. Jarrett, Edge rotation and edge slide distance graphs, Computers and Mathematics with Applications, (to appear).
[7] C. Jochum, J. Gasteiger and I. Ugi, The principle of minimum chemical distance, Angewandte Chemie International 19 (1980) 495-505, doi: 10.1002/anie.198004953.
[8] M. Johnson, Relating metrics, lines and variables defined on graphs to problems in medicinal chemistry, in: Graph Theory With Applications to Algorithms and Computer Science, Y. Alavi, G. Chartrand, L. Lesniak, D.R. Lick, and C.E. Wall, eds., (Wiley, New York, 1985) 457-470.
[9] V. Kvasnika and J. Pospichal, Two metrics for a graph-theoretic model of organic chemistry, J. Math. Chem. 3 (1989) 161-191, doi: 10.1007/BF01166047.