Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_2_a0, author = {Tuza, Zsolt}, title = {Graph colorings with local constraints - a survey}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {161--228}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a0/} }
Tuza, Zsolt. Graph colorings with local constraints - a survey. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 2, pp. 161-228. http://geodesic.mathdoc.fr/item/DMGT_1997_17_2_a0/
[1] M. Ajtai, J. Komlós, E. Szemerédi, A note on Ramsey numbers, Journal of Combinatorial Theory, Ser. A 29 (1980) 354-360.
[2] M.O. Albertson, You can't paint yourself into a corner, Manuscript, 1997.
[3] N. Alon, Choice numbers of graphs : A probabilistic approach, Combinatorics, Probability and Computing 1 (1992) 107-114, doi:10.1017/S0963548300000122.
[4] N. Alon, Restricted colorings of graphs, Surveys in Combinatorics (K. Walker, ed.), Proc. 14th British Combinatorial Conference, London Math. Soc. Lecture Notes Series 187, Cambridge University Press, 1993, 1-33.
[5] N. Alon, Private communication, October 1995.
[6] N. Alon, K. Berman, Regular hypergraphs, Gordon's lemma, Steinitz's lemma and Invariant Theory, Journal of Combinatorial Theory, Ser. A 43 (1986) 91-97.
[7] N. Alon, M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992) 125-134, doi: 10.1007/BF01204715.
[8] N. Alon, Zs. Tuza, M. Voigt, Choosability and fractional chromatic numbers, Discrete Mathematics 165/166 (1997) 31-38, doi: 10.1016/S0012-365X(96)00159-8.
[9] N. Alon, A. Zaks, T-choosability in graphs, Manuscript, 1996.
[10] L.D. Andersen, Completing partial latin squares, Mat. Fys. Medd. Danske Vid. Selsk. 41 (1985) 23-69.
[11] L.D. Andersen, A.J.W. Hilton, Symmetric Latin Square and Complete Graph Analogues of the Evans Conjecture, Journal of Combinatorial Designs 2 (1994) 197-252, doi: 10.1002/jcd.3180020404.
[12] S. Arnborg, A. Proskurowski, Linear-time algorithms for NP-hard problems on graphs embedded in k-trees, Discrete Applied Mathematics 23 (1989) 11-24, doi: 10.1016/0166-218X(89)90031-0.
[13] E. Arroyo, Thesis, Kennesaw State University, GA, in preparation.
[14] J. Beck, On 3-chromatic hypergraphs, Discrete Mathematics 24 (1978) 127-137, doi: 10.1016/0012-365X(78)90191-7.
[15] C. Berge, Graphs. North-Holland, 1985.
[16] E.R. Berlekamp, J.H. Conway, R.K. Guy, Winning Ways for your Mathematical Plays. Academic Press, 1982.
[17] M. Biró, M. Hujter, Zs. Tuza, Precoloring extension, Technical Report, Computer and Automation Institute, Budapest, 1990.
[18] M. Biró, M. Hujter, Zs. Tuza, Precoloring extension, I. Interval graphs, Discrete Mathematics 100 (1992) 267-279, doi: 10.1016/0012-365X(92)90646-W.
[19] M. Biró, M. Hujter, Zs. Tuza, Cross fertilisation of graph theory and aircraft maintenance scheduling, Thirty-Second Annual Symposium (G. Davison, ed.), AGIFORS (Airline Group of the International Federation of Operational Research Societies), 1993, 307-317.
[20] H.L. Bodlaender, On the complexity of some coloring games, 2 : 2 (1991) 133-147.
[21] H. Bodlaender, J.S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Müller, Zs. Tuza, Rankings of graphs, Graph Theoretic Concepts in Computer Science (E. W. Mayr et al., eds.), Lecture Notes in Computer Science 903, Springer-Verlag, 1995, 292-304.
[22] H.L. Bodlaender, K. Jansen, G.J. Woeginger, Scheduling with incompatible jobs, Discrete Applied Mathematics 55 (1994) 219-232, doi: 10.1016/0166-218X(94)90009-4.
[23] H.L. Bodlaender, D. Kratsch, The complexity of coloring games on perfect graphs, Theoretical Computer Science 106 (1992) 309-326, doi: 10.1016/0304-3975(92)90254-D.
[24] B. Bollobás, Chromatic number, girth and maximal degree, Discrete Mathematics 24 (1978) 311-314, doi: 10.1016/0012-365X(78)90102-4.
[25] B. Bollobás, The chromatic number of random graphs, Combinatorica 8 (1988) 49-55, doi: 10.1007/BF02122551.
[26] B. Bollobás, A.J. Harris, List-colourings of graphs, Graphs and Combinatorics 1 (1985) 115-127, doi: 10.1007/BF02582936.
[27] B. Bollobás, H.R. Hind, A new upper bound for the list chromatic number, Discrete Mathematics 74 (1989) 65-75, doi: 10.1016/0012-365X(89)90199-4.
[28] J.A. Bondy, R. Boppana, A. Siegel, Unpublished, 1989.
[29] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications. Elsevier, New York, 1976.
[30] O.V. Borodin, Problems of coloring and covering the vertex set of a graph by induced subgraphs. Ph.D. Thesis, Novosibirsk, USSR, 1979 (in Russian). Announced in: Criterion of chromaticity of a degree prescription, Abstracts of IV. All-Union Conf. on Theoretical Cybernetics, Novosibirsk, 1977, 127-128.
[31] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185, doi: 10.1515/crll.1989.394.180.
[32] O.V. Borodin, A.V. Kostochka, D.R. Woodall, List edge and list total colourings of multigraphs, Journal of Combinatorial Theory, Ser. B, in print.
[33] M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanišin, Survey of hereditary properties of graphs, Discussiones Mathematicae - Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[34] M. Borowiecki, I. Broere, P. Mihók, On generalized list colourings of graphs, Discussiones Mathematicae - Graph Theory 17 (1997) 127-132, doi: 10.7151/dmgt.1045.
[35] M. Borowiecki, E. Drgas-Burchardt, P. Mihók, Generalized list colourings of graphs, Discussiones Mathematicae - Graph Theory 15 (1995) 185-193, doi: 10.7151/dmgt.1016.
[36] M. Borowiecki, P. Mihók, Hereditary properties of graphs, Advances in Graph Theory (V.R. Kulli, ed.), Vishwa International Publications, Gulbarga, 1991, 41-68.
[37] D.P. Bovet, P. Crescenzi, Introduction to the Theory of Complexity. Prentice Hall International Series in Computer Science, 1994.
[38] R.L. Brooks, On colouring the nodes of a network, Proceedings of the Cambridge Philos. Soc. 37 (1941) 194-197, doi: 10.1017/S030500410002168X.
[39] J.I. Brown, D. Kelly, J. Schönheim, R.E. Woodrow, Graph coloring satisfying restraints, Discrete Mathematics 80 (1990) 123-143, doi: 10.1016/0012-365X(90)90113-V.
[40] S.A. Burr, Some undecidable problems involving the edge-coloring and vertex-coloring of graphs, Discrete Mathematics 50 (1984) 171-177, doi: 10.1016/0012-365X(84)90046-3.
[41] A.G. Chetwynd, R. Häggkvist, A note on list-colorings, Journal of Graph Theory 13 (1989) 87-95, doi: 10.1002/jgt.3190130112.
[42] C.J. Colbourn, The complexity of completing partial Latin squares, Annals of Discrete Mathematics 8 (1984) 25-30, doi: 10.1016/0166-218X(84)90075-1.
[43] D.G. Cornell, Y. Perl, L.K. Stewart, A linear recognition algorithm for cographs, SIAM Journal on Computing 4 (1985) 926-934, doi: 10.1137/0214065.
[44] B. Courcelle, The monadic second-order logic of graphs, I : Recognizable sets of finite graphs, Information and Computation 85 (1990) 12-75, doi: 10.1016/0890-5401(90)90043-H.
[45] L.J. Cowen, R.H. Cowen, D.R. Woodall, Defective colorings of graphs in surfaces ; partitions into subgraphs of bounded valency, Journal of Graph Theory 10 (1986) 187-195, doi: 10.1002/jgt.3190100207.
[46] D. de Werra, Restricted models for timetabling, Discrete Mathematics 165/166 (1997) 161-170, doi: 10.1016/S0012-365X(96)00208-7.
[47] D. de Werra, The combinatorics of timetabling, 96 (1997) 504-513.
[48] D. de Werra, Mathematical programming models in chromatic scheduling, Manuscript, 1997.
[49] J.H. Dinitz, W.J. Martin, The stipulation polynomial of a uniquely list-colorable graph, Australasian Journal of Combinatorics 11 (1995) 105-115.
[50] Q. Donner, On the number of list-colorings, Journal of Graph Theory 16 (1992) 239-245, doi: 10.1002/jgt.3190160307.
[51] M. Dror, G. Finke, S. Gravier, W. Kubiak, On the complexity of a restricted list-coloring problem, Manuscript, 1997.
[52] D.Z. Du, D.F. Hsu, F.K. Hwang, The Hamiltonian property of consecutive-d digraphs, 17 : 11 (1993) 61-63.
[53] P. Dukes, H. Emerson, G. MacGillivray, Undecidable generalized colouring problems, Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.
[54] N. Eaton, Unpublished, 1996.
[55] N. Eaton, T. Hull, Private communication, June 1997.
[56] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, 69 (1965) 125-130.
[57] J. Edmonds, D.R. Fulkerson, Transversals and matroid partition, 69 (1965) 147-153.
[58] M.N. Ellingham, L. Goddyn, List edge colourings of some 1-factorizable multigraphs, Combinatorica 16 (1996) 343-352, doi: 10.1007/BF01261320.
[59] P. Erdős, On a combinatorial problem, II, Acta Math. Acad. Sci. Hungar. 15 (1964) 445-447, doi: 10.1007/BF01897152.
[60] P. Erdős, On the combinatorial problems which I would most like to see solved, Combinatorica 1 (1981) 25-42, doi: 10.1007/BF02579174.
[61] P. Erdős, L. Lovász, Problems and results on 3-chromatic hypergraphs and related questions, Infinite and Finite Sets (A. Hajnal, L. Lovász and V. Sós, eds.), Colloq. Math. Soc. J. Bolyai, 10, North-Holland, Amsterdam, 1974, 609-627.
[62] P. Erdős, A.L. Rubin, H. Taylor, Choosability in graphs, Proc. West-Coast Conference on Combinatorics, Graph Theory and Computing, Arcata, California, Congressus Numerantium XXVI (1979) 125-157.
[63] S. Even, A. Itai, A. Shamir, On the complexity of time table and multicommodity flow problems, SIAM Journal on Computing 5 (1976) 691-703, doi: 10.1137/0205048.
[64] U. Faigle, U. Kern, H. Kierstead, W.T. Trotter, On the game chromatic number of some classes of graphs, Ars Combinatoria 35 (1993) 143-150.
[65] M. Farber, M. Hujter, Zs. Tuza, An upper bound on the number of cliques in a graph, Networks 23 (1993) 207-210, doi: 10.1002/net.3230230308.
[66] A.S. Finbow, B.L. Hartnell, A game related to covering by stars, Ars Combinatoria 16-A (1983) 189-198.
[67] H. Fleischner, M. Stiebitz, A solution to a colouring problem of P. Erdős, Discrete Mathematics 101 (1992) 39-48, doi: 10.1016/0012-365X(92)90588-7.
[68] D. Gale, S. Shapley, College admissions and the stability of marriage, American Mathematical Monthly 69 (1962) 9-15, doi: 10.2307/2312726.
[69] T. Gallai, Kritische Graphen I, II, Publ. Math. Inst. Hungar. Acad. Sci. 8 (1963) 165-192 ; 373-395.
[70] F. Galvin, The list chromatic index of a bipartite multigraph, Journal of Combinatorial Theory, Ser. B 63 (1995) 153-158.
[71] M.R. Garey, D.S. Johnson, Computers and Intractability - A Guide to the Theory of NP-Completeness. Freeman, New York, 1979.
[72] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.
[73] J.E. Graver, A survey of the maximum depth problem for indecomposable exact covers, Infinite and Finite Sets, Colloq. Math. Soc. János Bolyai, 1973, North-Holland, 731-743.
[74] S. Gravier, A Hajós-like theorem for list coloring, Discrete Mathematics 152 (1996) 299-302, doi: 10.1016/0012-365X(95)00350-6.
[75] S. Gravier, F. Maffray, On the choice number of 3-colorable elementary graphs, Discrete Mathematics 165/166 (1997) 353-358, doi: 10.1016/S0012-365X(96)00182-3.
[76] S. Gravier, F. Maffray, Graphs whose choice number is equal to their chromatic number, Manuscript, LSD2-IMAG, Grenoble, France, January 1995.
[77] H. Gröflin, Feasible graph coloring and a generalization of perfect graphs, Manuscript, University of Fribourg, 1992.
[78] M. Grötschel, L. Lovász, A. Schrijver, Polynomial algorithms for perfect graphs, Annals of Discrete Mathematics 21 (1984) 325-356.
[79] M. Grötschel, L. Lovász, A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin, Heidelberg, 1988.
[80] R.P. Gupta, The chromatic index and the degree of a graph, Notices of the American Mathematical Society 13 (1966) Abstract 66T-429.
[81] S. Gutner, Choice Numbers of Graphs. M.Sc. Thesis, Tel Aviv University, 1992.
[82] S. Gutner, The complexity of planar graph choosability, Manuscript, 1994, to appear in Discrete Mathematics.
[83] S. Gutner, M. Tarsi, Some results on (a:b)-choosability, To appear.
[84] R. Häggkvist, Towards a solution of the Dinitz problem ? Discrete Mathematics 75 (1989) 247-251.
[85] R. Häggkvist, Restricted edge-colourings of bipartite graphs, Combinatorics, Probability and Computing 5 (1996) 385-392, doi: 10.1017/S0963548300002133.
[86] R. Häggkvist, A. Chetwynd, Some upper bounds on the total and list chromatic numbers of multigraphs, Journal of Graph Theory 16 (1992) 503-516, doi: 10.1002/jgt.3190160510.
[87] R. Häggkvist, J. Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Combinatorics, Probability and Computing (1997) in print.
[88] Gy. Hajós, Über eine Konstruktion nicht n-färbbarer Graphen, Wiss. Z. Martin Luther Univ. Math.-Natur. Reihe 10 (1961) 116-117.
[89] W.K. Hale, Frequency assignment : theory and applications, Proceedings of IEEE 68 (1980) 1497-1514, doi: 10.1109/PROC.1980.11899.
[90] D. Hanson, G. MacGillivray, B. Toft, Choosability of bipartite graphs, Ars Combinatoria 44 (1996) 183-192.
[91] F. Harary, Graph Theory. Addison-Wesley, 1969.
[92] F. Harary, Zs. Tuza, Two graph-colouring games, Bulletin of the Australian Mathematical Society 48 (1993) 141-149, doi: 10.1017/S0004972700015549.
[93] A. Hertz, Slim graphs, Graphs and Combinatorics 5 (1989) 149-157, doi: 10.1007/BF01788666.
[94] A.J.W. Hilton, P.D. Johnson, Jr., Extending Hall's theorem, Topics in Combinatorics and Graph Theory - Essays in Honour of Gerhard Ringel (R. Bodendiek et al., eds.), Teubner, 1990, 359-371.
[95] A.J.W. Hilton, P.D. Johnson, Jr., The Hall number, the Hall index, and the total Hall number of a graph, Manuscript, February 1997.
[96] A.J.W. Hilton, P.D. Johnson, Jr., E.B. Wantland, The Hall number of a simple graph, Congressus Numerantium, to appear.
[97] H.R. Hind, Restricted Edge-Colourings. Ph.D. Thesis, Peterhouse College, Cambridge, 1988.
[98] D.G. Hoffman, P.D. Johnson, Jr., On the choice number of $K_{m,n}$, Congressus Numerantium 98 (1993) 105-111.
[99] D.G. Hoffman, P.D. Johnson, Jr., E.B. Wantland, Restricted choice numbers, Congressus Numerantium 105 (1994) 65-79.
[100] I. Holyer, The NP-completeness of edge-coloring, SIAM Journal on Computing 10 (1981) 718-720, doi: 10.1137/0210055.
[101] J. Hopcroft, R.M. Karp, An $n^{5/2}$ algorithm for maximum matching in bipartite graphs, SIAM Journal on Computing 2 (1973) 225-231, doi: 10.1137/0202019.
[102] R. Huang, G.-C. Rota, On the relations of various conjectures on Latin squares and straightening coefficients, Discrete Mathematics 128 (1994) 225-236, doi: 10.1016/0012-365X(94)90114-7.
[103] M. Hujter, Zs. Tuza, Precoloring extension, II. Graph classes related to bipartite graphs, Acta Mathematica Universitatis Comenianae 62 (1993) 1-11.
[104] M. Hujter, Zs. Tuza, The number of maximal independent sets in triangle-free graphs, SIAM Journal on Discrete Mathematics 6 (1993) 284-288, doi: 10.1137/0406022.
[105] M. Hujter, Zs. Tuza, Precoloring extension, III. Classes of perfect graphs, Combinatorics, Probability and Computing 5 (1996) 35-56, doi: 10.1017/S0963548300001826.
[106] M. Hujter, Zs. Tuza, Precoloring extension, IV. General bounds and list colorings, In preparation.
[107] F. Jaeger, On the Penrose number of cubic diagrams, Discrete Mathematics 74 (1989) 85-97, doi: 10.1016/0012-365X(89)90201-X.
[108] K. Jansen, The optimum cost chromatic partition problem, Algorithms and Complexity, Proc. CIAC 3 (G. Bongiovanni et al., eds.), Lecture Notes in Computer Science 1203 (1997) 25-36. Extended version : Complexity results for the optimum cost chromatic partition problem, Manuscript, 1997.
[109] K. Jansen, P. Scheffler, Generalized colorings for tree-like graphs, Discrete Applied Mathematics 75 (1997) 135-155. Preliminary version in : Proceedings of the 18th International Workshop on Graph-Theoretic Concepts in Computer Science, WG'92 (E. W. Mayr, ed.), Lecture Notes in Computer Science 657, Springer-Verlag, 1993, 50-59.
[110] J.C.M. Janssen, The Dinitz problem solved for rectangles, Bulletin of the American Mathematical Society 29 (1993) 243-249, doi: 10.1090/S0273-0979-1993-00430-0.
[111] T.R. Jensen, B. Toft, Graph Coloring Problems. Wiley Interscience, 1995.
[112] T.R. Jensen, B. Toft, Choosability versus chromaticity - the plane unit distance graph has a 2-chromatic subgraph of infinite list-chromatic number, Geombinatorics 5 (1995) 45-64.
[113] A. Johansson, An improved upper bound on the choice number for triangle free graphs, Manuscript, January 1996.
[114] A. Johansson, The choice number of sparse graphs, Preliminary version, April 1996.
[115] D.S. Johnson, M. Yannakakis, C.M. Papadimitriou, On generating all maximal independent sets, Information Processing Letters 27 (1988) 119-123, doi: 10.1016/0020-0190(88)90065-8.
[116] P.D. Johnson, Jr., The choice number of the plane, Geombinatorics 3 (1994) 122-128.
[117] M. Juvan, B. Mohar, List colorings of outerplanar graphs, Manuscript, 1996.
[118] M. Juvan, B. Mohar, R. Skrekovski, On list edge-colorings of subcubic graphs, Manuscript, 1995.
[119] M. Juvan, B. Mohar, R. Skrekovski, List-total colorings of graphs, Manuscript, 1996.
[120] M. Juvan, B. Mohar, R. Skrekovski, Graphs of degree 4 are 5-edge-choosable, Manuscript, 1996.
[121] J. Kahn, Recent results on some not-so-recent hypergraph matching and covering problems, Extremal Problems for Finite Sets (P. Frankl et al., eds.), Bolyai Society Mathematical Studies 3, János Bolyai Math. Soc., Budapest, 1994, 305-353.
[122] J. Kahn, Asymptotically good list-colorings, Journal of Combinatorial Theory, Ser. A 73 (1996) 1-59.
[123] J. Kahn, Asymptotics of the list-chromatic index for multigraphs, Manuscript, 1996.
[124] J. Kahn, Private communication, June 1997.
[125] M. Katchalski, W. McCuaig, S. Seager, Ordered colourings, Discrete Mathematics 142 (1995) 141-154, doi: 10.1016/0012-365X(93)E0216-Q.
[126] H. Kierstead, W.T. Trotter, Planar graph coloring with an uncooperative partner, Journal of Graph Theory 18 (1994) 569-584.
[127] H. Kierstead, Zs. Tuza, Game chromatic number and tree width, Manuscript, 1995.
[128] J.H. Kim, On Brooks' theorem for sparse graphs, Combinatorics, Probability and Computing 4 (1995) 97-132, doi: 10.1017/S0963548300001528.
[129] A.V. Kostochka, Degree, girth and chromatic number, Combinatorics, Colloq. Math. Soc. János Bolyai 18, Keszthely, Hungary, 1976. North-Holland, 679-696.
[130] A.V. Kostochka, List edge chromatic number of graphs with large girth, Discrete Mathematics 101 (1992) 189-201, doi: 10.1016/0012-365X(92)90602-C.
[131] A.V. Kostochka, A.F. Sidorenko, Problem presented at the problem session, Fourth Czechoslovak Symposium on Combinatorics, Prachatice, 1990. Annals of Discrete Mathematics 51 (1992) 380.
[132] A.V. Kostochka, M. Stiebitz, B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Mathematics 162 (1996) 299-303, doi: 10.1016/0012-365X(95)00294-7.
[133] A.V. Kostochka, D.R. Woodall, Choosability and multicircuits, First draft, August 1997.
[134] J. Kratochvíl, Precoloring extension with fixed color bound, Acta Mathematica Universitatis Comenianae 62 (1993) 139-153.
[135] J. Kratochvíl, A. Seb o, Coloring precolored perfect graphs, Journal of Graph Theory, to appear.
[136] J. Kratochvíl, Zs. Tuza, Algorithmic complexity of list colorings, Discrete Applied Mathematics 50 (1994) 297-302, doi: 10.1016/0166-218X(94)90150-3.
[137] J. Kratochvíl, Zs. Tuza, M. Voigt, Choosing subsets from color sets, Discrete Mathematics, to appear.
[138] J. Kratochvíl, Zs. Tuza, M. Voigt, Brooks-type theorems for choosability with separation, Journal of Graph Theory, in print.
[139] M. Kubale, Some results concerning the complexity of restricted colorings of graphs, Discrete Applied Mathematics 36 (1992) 35-46, doi: 10.1016/0166-218X(92)90202-L.
[140] E.L. Lawler, A note on the complexity of the chromatic number problem, Information Processing Letters 5 (1976) 66-67, doi: 10.1016/0020-0190(76)90065-X.
[141] V.B. Le, A good characterization of cograph contractions, Manuscript, September 1996.
[142] L. Lovász, Combinatorial Problems and Exercises. Akadémiai Kiadó, Budapest, 1979.
[143] F. Maffray, Kernels in perfect line-graphs, Journal of Combinatorial Theory, Ser. B 55 (1992) 1-8.
[144] N.V.R. Mahadev, F.S. Roberts, P. Santhanakrishnan, 3-choosable complete bipartite graphs, Technical Report 49-91, Rutgers University, New Brunswick, NJ, 1991.
[145] O. Marcotte, P.D. Seymour, Extending an edge coloring, Journal of Graph Theory 14 (1990) 565-573, doi: 10.1002/jgt.3190140508.
[146] P. Mihók, An extension of Brooks' theorem, Fourth Czechoslovak Symposium on Combinatorics, Prachatice, 1990. Annals of Discrete Mathematics 51 (1992) 235-236.
[147] P. Mihók, Zs. Tuza, M. Voigt, Fractional P-colorings and the P-choice ratio, First draft, August 1997.
[148] M. Mirzakhani, A small non-4-choosable planar graph, Manuscript, 1996.
[149] J.W. Moon, L. Moser, On cliques in graphs, Israel Journal of Mathematics 3 (1965) 23-28, doi: 10.1007/BF02760024.
[150] C.St.J.A. Nash-Williams, An application of matroids to graph theory, Theory of Graphs (P. Rosenstiehl, ed.), Proc. Int. Symp., Roma, 1996, Gordon and Breach, New York, 1967, 263-265.
[151] P. O-Donnel, In preparation, 1995. (Communicated by N. Eaton, 1997.)
[152] J. Petersen, Die Theorie der regulären Graphs, Acta Math. 15 (1891) 193-220, doi: 10.1007/BF02392606.
[153] M. Richardson, Solutions of irreflexive relations, Annals of Mathematics 58 (1953) 573-580, doi: 10.2307/1969755.
[154] F.S. Roberts, T-colorings of graphs : recent results and open problems, Discrete Mathematics 93 (1991) 229-245, doi: 10.1016/0012-365X(91)90258-4.
[155] F.S. Roberts, New directions in graph theory (with an emphasis on the role of applications), Annals of Discrete Mathematics 55 (1993) 13-43, doi: 10.1016/S0167-5060(08)70373-X.
[156] N. Robertson, P. Seymour, Graph minors, II. Algorithmic aspects of tree-width, Journal of Algorithms 7 (1986) 309-322, doi: 10.1016/0196-6774(86)90023-4.
[157] H. Sachs, Elementary proof of the cycle-plus-triangles theorem, Combinatorics, Paul Erdős is Eighty (Volume 1) (D. Miklós et al., eds.), Bolyai Society Mathematical Studies 1, János Bolyai Math. Soc., Budapest, 1993, 347-359.
[158] T.J. Schaefer, On the complexity of some two-person perfect-information games, 16 (1978) 185-225.
[159] P. Scheffler, Die Baumweite von Graphen als ein Maß für die Komplizierheit algorithmischer Probleme, Report RMATH-04/89, K.-Weierstraß-Institut für Mathematik, Berlin, 1989.
[160] D.E. Scheim, The number of edge 3-colorings of a planar cubic graph as a permanent, Discrete Mathematics 8 (1974) 377-382, doi: 10.1016/0012-365X(74)90157-5.
[161] J.H. Schmerl, The list chromatic number of Euclidean space, Geombinatorics 5 (1995) 65-68.
[162] A. Schrijver, Theory of Linear and Integer Programming. Wiley, 1986.
[163] P.D. Seymour, Problem presented at the problem session, DIMACS Meeting on Polyhedral Combinatorics, Morristown, 1989.
[164] P.D. Seymour, A note on list arboricity, Manuscript, April 1996.
[165] C.E. Shannon, A theorem on coloring the lines of a network, Journal of Math. Phys. 28 (1948) 148-151.
[166] J. Shearer, A note on the independence number of triangle-free graphs, Discrete Mathematics 46 (1983) 83-87, doi: 10.1016/0012-365X(83)90273-X.
[167] J. Shearer, A note on the independence number of triangle-free graphs, II, Journal of Combinatorial Theory, Ser. B 53 (1991) 300-307.
[168] J. Shearer, On the independence number of sparse graphs, Random Structures and Algorithms 7 (1995) 269-271, doi: 10.1002/rsa.3240070305.
[169] A.M. Shende, B. Tesman, 3-choosability of $K_{5,q}$, Congressus Numerantium 111 (1995) 193-221.
[170] R. Skrekovski, List improper colorings of planar graphs, To appear.
[171] T. Slivnik, Short proof of Galvin's theorem on the list-chromatic index of a bipartite multigraph, Combinatorics, Probability and Computing 5 (1996) 91-94, doi: 10.1017/S0963548300001851.
[172] L. Sun, A note on colouring of complete graphs, Quarterly Journal of Mathematics, Oxford (2) 46 (1995) 235-237, doi: 10.1093/qmath/46.2.235.
[173] J.J. Sylvester, On an application of the new atomic theory to the graphical representation of the invariants and covariants of binary quantics, with three appendices, American Journal of Mathematics 1 (1878) 64-125, doi: 10.2307/2369436.
[174] B.A. Tesman, T-Colorings, T-List Colorings, and Set T-Colorings of Graphs. Ph.D. Thesis, Department of Mathematics, Rutgers University, New Brunswick, NJ, October 1989.
[175] B.A. Tesman, List T-colorings of graphs, Discrete Applied Mathematics 45 (1993) 277-289, doi: 10.1016/0166-218X(93)90015-G.
[176] C. Thomassen, Every planar graph is 5-choosable, Journal of Combinatorial Theory, Ser. B 62 (1994) 180-181.
[177] C. Thomassen, 3-list-coloring planar graphs of girth 5, Journal of Combinatorial Theory, Ser. B 64 (1995) 101-107.
[178] C. Thomassen, Color-critical graphs on a fixed surface, Journal of Combinatorial Theory, Ser. B 70 (1997) 67-100.
[179] B. Toft, Color-critical graphs and hypergraphs, Journal of Combinatorial Theory, Ser. B 16 (1974) 145-161.
[180] S. Tsukiyama, M. Ide, H. Ariyshi, I. Shirakawa, A new algorithm for generating all the maximal independent sets, SIAM Journal on Computing 6 (1977) 505-517, doi: 10.1137/0206036.
[181] Zs. Tuza, Choice-perfect graphs and Hall numbers, In preparation.
[182] Zs. Tuza, M. Voigt, Lecture at the German Combinatorics Conference, Hamburg, 1994.
[183] Zs. Tuza, M. Voigt, On (a,b)-Choosability, Preprints of Twente Workshop, Enschede, The Netherlands, June 1995.
[184] Zs. Tuza, M. Voigt, Ranking problems on graphs, Manuscript, 1995.
[185] Zs. Tuza, M. Voigt, On a conjecture of Erdős, Rubin and Taylor, Tatra Mountains Mathematical Publications 9 (1996) 69-82.
[186] Zs. Tuza, M. Voigt, Every 2-choosable graph is (2m,m)-choosable, Journal of Graph Theory 22 (1996) 245-252, doi: 10.1002/(SICI)1097-0118(199607)22:3245::AID-JGT5>3.0.CO;2-M
[187] Zs. Tuza, M. Voigt, List colorings and reducibility, Discrete Mathematics (1997) in print.
[188] L. Vigneron, Remarques sur les réseaux arbiques de classe 3 associés au probleme des quatre couleurs, C. R. Acad. Sci. Paris 223 (1946) 770-772.
[189] V.G. Vizing, On an estimate of the chromatic class of a p-graph, Metody Diskret. Analiz. 3 (1964) 25-30. (in Russian)
[190] V.G. Vizing, Coloring the vertices of a graph in prescribed colors, Metody Diskret. Anal. v Teorii Kodov i Schem 29 (1976) 3-10. (In Russian)
[191] M. Voigt, List colourings of planar graphs, Discrete Mathematics 120 (1993) 215-219, doi: 10.1016/0012-365X(93)90579-I.
[192] M. Voigt, Unpublished conjecture, 1993.
[193] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Mathematics 146 (1995) 325-328, doi: 10.1016/0012-365X(94)00180-9.
[194] M. Voigt, On List Colourings and Choosability of Graphs. Habilitationsschrift, Technische Universität Ilmenau, Germany, March 1997.
[195] M. Voigt, B. Wirth, On 3-colorable non-4-choosable planar graphs, Journal of Graph Theory 24 (1997) 233-235, doi: 10.1002/(SICI)1097-0118(199703)24:3233::AID-JGT4>3.0.CO;2-Q
[196] A. Waller, An upper bound for list T-colourings, Bulletin of the London Mathematical Society 28 (1996) 337-342, doi: 10.1112/blms/28.4.337.
[197] G.J. Woeginger, Unpublished conjecture, 1992.
[198] K. Xu, A special case of the edge-chromatic scheduling problem, Report ORWP 96/03, École Polytechnique Fédérale de Lausanne, 1996.