The order of uniquely partitionable graphs
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 115-125.

Voir la notice de l'article provenant de la source Library of Science

Let ₁,...,ₙ be properties of graphs. A (₁,...,ₙ)-partition of a graph G is a partition V₁,...,Vₙ of V(G) such that, for each i = 1,...,n, the subgraph of G induced by V_i has property _i. If a graph G has a unique (₁,...,ₙ)-partition we say it is uniquely (₁,...,ₙ)-partitionable. We establish best lower bounds for the order of uniquely (₁,...,ₙ)-partitionable graphs, for various choices of ₁,...,ₙ.
Keywords: hereditary property of graphs, uniquely partitionable graphs
@article{DMGT_1997_17_1_a7,
     author = {Broere, Izak and Frick, Marietjie and Mih\'ok, Peter},
     title = {The order of uniquely partitionable graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a7/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Frick, Marietjie
AU  - Mihók, Peter
TI  - The order of uniquely partitionable graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 115
EP  - 125
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a7/
LA  - en
ID  - DMGT_1997_17_1_a7
ER  - 
%0 Journal Article
%A Broere, Izak
%A Frick, Marietjie
%A Mihók, Peter
%T The order of uniquely partitionable graphs
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 115-125
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a7/
%G en
%F DMGT_1997_17_1_a7
Broere, Izak; Frick, Marietjie; Mihók, Peter. The order of uniquely partitionable graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a7/

[1] G. Benadé, I. Broere, B. Jonck and M. Frick, Uniquely $(m,k)^τ$-colourable graphs and k-τ-saturated graphs, Discrete Math. 162 (1996) 13-22, doi: 10.1016/0012-365X(95)00301-C.

[2] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory (Vishwa Internat. Publ., 1991) 41-68.

[3] I. Broere and M. Frick, On the order of uniquely (k,m)-colourable graphs, Discrete Math. 82 (1990) 225-232, doi: 10.1016/0012-365X(90)90200-2.

[4] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038.

[5] G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth Brooks/Cole, Monterey, 1986).

[6] M. Frick, On replete graphs, J. Graph Theory 16 (1992) 165-175, doi: 10.1002/jgt.3190160208.

[7] M. Frick and M.A. Henning, Extremal results on defective colourings of graphs, Discrete Math. 126 (1994) 151-158, doi: 10.1016/0012-365X(94)90260-7.

[8] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.

[9] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002.