Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_1_a7, author = {Broere, Izak and Frick, Marietjie and Mih\'ok, Peter}, title = {The order of uniquely partitionable graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {115--125}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a7/} }
TY - JOUR AU - Broere, Izak AU - Frick, Marietjie AU - Mihók, Peter TI - The order of uniquely partitionable graphs JO - Discussiones Mathematicae. Graph Theory PY - 1997 SP - 115 EP - 125 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a7/ LA - en ID - DMGT_1997_17_1_a7 ER -
Broere, Izak; Frick, Marietjie; Mihók, Peter. The order of uniquely partitionable graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 115-125. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a7/
[1] G. Benadé, I. Broere, B. Jonck and M. Frick, Uniquely $(m,k)^τ$-colourable graphs and k-τ-saturated graphs, Discrete Math. 162 (1996) 13-22, doi: 10.1016/0012-365X(95)00301-C.
[2] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory (Vishwa Internat. Publ., 1991) 41-68.
[3] I. Broere and M. Frick, On the order of uniquely (k,m)-colourable graphs, Discrete Math. 82 (1990) 225-232, doi: 10.1016/0012-365X(90)90200-2.
[4] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038.
[5] G. Chartrand and L. Lesniak, Graphs and Digraphs (Second Edition, Wadsworth Brooks/Cole, Monterey, 1986).
[6] M. Frick, On replete graphs, J. Graph Theory 16 (1992) 165-175, doi: 10.1002/jgt.3190160208.
[7] M. Frick and M.A. Henning, Extremal results on defective colourings of graphs, Discrete Math. 126 (1994) 151-158, doi: 10.1016/0012-365X(94)90260-7.
[8] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.
[9] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002.