@article{DMGT_1997_17_1_a5,
author = {Borowiecki, Piotr and Ha{\l}uszczak, Mariusz},
title = {Partitions of some planar graphs into two linear forests},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {95--102},
year = {1997},
volume = {17},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a5/}
}
Borowiecki, Piotr; Hałuszczak, Mariusz. Partitions of some planar graphs into two linear forests. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 95-102. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a5/
[1] M. Borowiecki, P. Mihók, Hereditary properties of graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.
[2] P. Borowiecki, P-Bipartitions of Graphs, Vishwa International J. GraphTheory 2 (1993) 109-116.
[3] I. Broere, C.M. Mynhardt, Generalized colourings of outerplanar and planar graphs, in: Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 151-161.
[4] W. Goddard, Acyclic colourings of planar graphs, Discrete Math. 91 (1991) 91-94, doi: 10.1016/0012-365X(91)90166-Y.
[5] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications, New York, 1995).
[6] P. Mihók, On the vertex partition numbers, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. Third Czech. Symp. Graph Theory, Prague, 1982 (Teubner-Verlag, Leipzig, 1983) 183-188.
[7] K.S. Poh, On the Linear Vertex-Arboricity of a Planar Graph, J. Graph Theory 14 (1990) 73-75, doi: 10.1002/jgt.3190140108.
[8] J. Wang, On point-linear arboricity of planar graphs, Discrete Math. 72 (1988) 381-384, doi: 10.1016/0012-365X(88)90229-4.