Graphs maximal with respect to hom-properties
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 77-88.

Voir la notice de l'article provenant de la source Library of Science

For a simple graph H, →H denotes the class of all graphs that admit homomorphisms to H (such classes of graphs are called hom-properties). We investigate hom-properties from the point of view of the lattice of hereditary properties. In particular, we are interested in characterization of maximal graphs belonging to →H. We also provide a description of graphs maximal with respect to reducible hom-properties and determine the maximum number of edges of graphs belonging to →H.
Keywords: hom-property of graphs, hereditary property of graphs, maximal graphs
@article{DMGT_1997_17_1_a3,
     author = {Kratochv{\'\i}l, Jan and Mih\'ok, Peter and Semani\v{s}in, Gabriel},
     title = {Graphs maximal with respect to hom-properties},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a3/}
}
TY  - JOUR
AU  - Kratochvíl, Jan
AU  - Mihók, Peter
AU  - Semanišin, Gabriel
TI  - Graphs maximal with respect to hom-properties
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 77
EP  - 88
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a3/
LA  - en
ID  - DMGT_1997_17_1_a3
ER  - 
%0 Journal Article
%A Kratochvíl, Jan
%A Mihók, Peter
%A Semanišin, Gabriel
%T Graphs maximal with respect to hom-properties
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 77-88
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a3/
%G en
%F DMGT_1997_17_1_a3
Kratochvíl, Jan; Mihók, Peter; Semanišin, Gabriel. Graphs maximal with respect to hom-properties. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 77-88. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a3/

[1] M. Borowiecki and P. Mihók, Hereditary Properties of Graphs, in: Advances in Graph Theory (Vishwa International Publications, 1991) 41-68.

[2] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties, Discussiones Mathematicae Graph Theory 17 (1997) 51-66, doi: 10.7151/dmgt.1038.

[3] R.L. Graham, M. Grötschel and L. Lovász, Handbook of Combinatorics (Elsevier Science B.V. Amsterdam, 1995).

[4] P. Hell and J. Nešetril, The core of a graph, Discrete Math. 109 (1992) 117-126, doi: 10.1016/0012-365X(92)90282-K.

[5] P. Hell and J. Nešetril, Complexity of H-coloring, J. Combin. Theory (B) 48 (1990) 92-110, doi: 10.1016/0095-8956(90)90132-J.

[6] T.R. Jensen and B. Toft, Graph Colouring Problems (Wiley-Interscience Publications New York, 1995).

[7] J. Kratochví l and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors (submitted).

[8] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18, doi: 10.7151/dmgt.1002.

[9] P. Mihók and G. Semanišin, On the chromatic number of reducible hereditary properties (submitted).

[10] J. Nešetril, Graph homomorphisms and their structures, in: Proc. Seventh Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 825-832.

[11] M. Simonovits, Extremal graph theory, in: L.W. Beineke and R.J. Wilson, eds., Selected Topics in Graph Theory vol. 2, (Academic Press, London, 1983) 161-200.

[12] X. Zhou, Uniquely H-colourable graphs with large girth, J. Graph Theory 23 (1996) 33-41, doi: 10.1002/(SICI)1097-0118(199609)23:133::AID-JGT3>3.0.CO;2-L