On some variations of extremal graph problems
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 67-76

Voir la notice de l'article provenant de la source Library of Science

A set P of graphs is termed hereditary property if and only if it contains all subgraphs of any graph G belonging to P. A graph is said to be maximal with respect to a hereditary property P (shortly P-maximal) whenever it belongs to P and none of its proper supergraphs of the same order has the property P. A graph is P-extremal if it has a the maximum number of edges among all P-maximal graphs of given order. The number of its edges is denoted by ex(n, P). If the number of edges of a P-maximal graph is minimum, then the graph is called P-saturated and its number of edges is denoted by sat(n, P).
Keywords: hereditary properties of graphs, maximal graphs, extremal graphs, saturated graphs
@article{DMGT_1997_17_1_a2,
     author = {Semani\v{s}in, Gabriel},
     title = {On some variations of extremal graph problems},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {67--76},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a2/}
}
TY  - JOUR
AU  - Semanišin, Gabriel
TI  - On some variations of extremal graph problems
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 67
EP  - 76
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a2/
LA  - en
ID  - DMGT_1997_17_1_a2
ER  - 
%0 Journal Article
%A Semanišin, Gabriel
%T On some variations of extremal graph problems
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 67-76
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a2/
%G en
%F DMGT_1997_17_1_a2
Semanišin, Gabriel. On some variations of extremal graph problems. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a2/