Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_1_a2, author = {Semani\v{s}in, Gabriel}, title = {On some variations of extremal graph problems}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {67--76}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a2/} }
Semanišin, Gabriel. On some variations of extremal graph problems. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 67-76. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a2/
[1] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa Intern. Publication, Gulbarga, 1991) 41-68.
[2] P. Erdős, Some recent results on extremal problems in graph theory, Results in: P. Rosentstiehl, ed., Theory of Graphs (Gordon and Breach New York; Dunod Paris, 1967) 117-123; MR37#2634.
[3] P. Erdős, On some new inequalities concerning extremal properties of graphs, in: P. Erdős and G. Katona, eds., Theory of Graphs (Academic Press, New York, 1968) 77-81; MR38#1026.
[4] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.
[5] R. Lick and A. T. White, k-degenerate graphs, Canadian J. Math. 22 (1970) 1082-1096; MR42#1715.
[6] P. Mihók, On graphs critical with respect to vertex partition numbers, Discrete Math. 37 (1981) 123-126, doi: 10.1016/0012-365X(81)90146-1.
[7] P. Mihók and G. Semanišin, On the chromatic number of reducible hereditary properties (submitted).
[8] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18; MR96c:05149, doi: 10.7151/dmgt.1002.
[9] M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: P. Erdős and G. Katona, eds., Theory of Graphs (Academic Press, New York, 1968) 279-319; MR 38#2056.
[10] M. Simonovits, Extremal graph problems with symmetrical extremal graphs. Additional chromatical conditions, Discrete Math. 7 (1974) 349-376; MR49#2459.
[11] M. Simonovits, Extremal graph theory, in: L.W. Beineke and R.J. Wilson, eds., Selected Topics in Graph Theory vol. 2 (Academic Press, London, 1983) 161-200.
[12] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452 (Hungarian); MR8,284j.
[13] P. Turán, On the theory of graph, Colloquium Math. 3 (1954) 19-30; MR15,476b.
[14] L. Kászonyi and Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209.