Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_1_a10, author = {Szigeti, Jen\H{o} and Tuza, Zsolt}, title = {Generalized colorings and avoidable orientations}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {137--145}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a10/} }
Szigeti, Jenő; Tuza, Zsolt. Generalized colorings and avoidable orientations. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 137-145. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a10/
[1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
[2] J. Bucko, M. Frick, P. Mihók and R. Vasky, Uniquely partitionable graphs, Discussiones Mathematicae Graph Theory 17 (1997) 103-113, doi: 10.7151/dmgt.1043.
[3] Y. Caro, Private communication, 1989.
[4] T. Gallai, On directed paths and circuits, in: P. Erd os and G.O.H. Katona, eds., Theory of Graphs, Proc. Colloq. Math. Soc. János Bolyai, Tihany (Hungary) 1966 (Academic Press, San Diego, 1968) 115-118.
[5] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.
[6] G.J. Minty, A theorem on n-colouring the points of a linear graph, Amer. Math. Monthly 67 (1962) 623-624, doi: 10.2307/2310826.
[7] R. Roy, Nombre chromatique et plus longs chemins d'un graphe, Revue AFIRO 1 (1967) 127-132.
[8] Zs. Tuza, Graph coloring in linear time, J. Combin. Theory (B) 55 (1992) 236-243, doi: 10.1016/0095-8956(92)90042-V.
[9] Zs. Tuza, Chromatic numbers and orientations, Unpublished manuscript, February 1993.
[10] Zs. Tuza, Some remarks on the Gallai-Roy Theorem, in preparation.