Maximal graphs with respect to hereditary properties
Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 51-66.

Voir la notice de l'article provenant de la source Library of Science

A property of graphs is a non-empty set of graphs. A property P is called hereditary if every subgraph of any graph with property P also has property P. Let P₁, ...,Pₙ be properties of graphs. We say that a graph G has property P₁∘...∘Pₙ if the vertex set of G can be partitioned into n sets V₁, ...,Vₙ such that the subgraph of G induced by V_i has property P_i; i = 1,..., n. A hereditary property R is said to be reducible if there exist two hereditary properties P₁ and P₂ such that R = P₁∘P₂. If P is a hereditary property, then a graph G is called P- maximal if G has property P but G+e does not have property P for every e ∈ E([G̅]). We present some general results on maximal graphs and also investigate P-maximal graphs for various specific choices of P, including reducible hereditary properties.
Keywords: hereditary property of graphs, maximal graphs, vertex partition
@article{DMGT_1997_17_1_a1,
     author = {Broere, Izak and Frick, Marietjie and Semani\v{s}in, Gabriel},
     title = {Maximal graphs with respect to hereditary properties},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {51--66},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a1/}
}
TY  - JOUR
AU  - Broere, Izak
AU  - Frick, Marietjie
AU  - Semanišin, Gabriel
TI  - Maximal graphs with respect to hereditary properties
JO  - Discussiones Mathematicae. Graph Theory
PY  - 1997
SP  - 51
EP  - 66
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a1/
LA  - en
ID  - DMGT_1997_17_1_a1
ER  - 
%0 Journal Article
%A Broere, Izak
%A Frick, Marietjie
%A Semanišin, Gabriel
%T Maximal graphs with respect to hereditary properties
%J Discussiones Mathematicae. Graph Theory
%D 1997
%P 51-66
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a1/
%G en
%F DMGT_1997_17_1_a1
Broere, Izak; Frick, Marietjie; Semanišin, Gabriel. Maximal graphs with respect to hereditary properties. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 51-66. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a1/

[1] G. Benadé, I. Broere, B. Jonck and M. Frick, Uniquely $(m,k)^τ$-colourable graphs and k-τ-saturated graphs, Discrete Math. 162 (1996) 13-22, doi: 10.1016/0012-365X(95)00301-C.

[2] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs, submitted.

[3] M. Borowiecki, J. Ivančo, P. Mihók and G. Semanišin, Sequences realizable by maximal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124; MR96e:05078.

[4] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.

[5] I. Broere, M. Frick and P. Mihók, On the order of uniquely partitionable graphs, submitted.

[6] G. Chartrand and L. Lesniak, Graphs and Digraphs, (Wadsworth Brooks/Cole, Monterey California, 1986).

[7] P. Erdős and T. Gallai, On the minimal number of vertices representing the edges of a graph, Magyar Tud. Akad. Math. Kutató Int. Közl. 6 (1961) 181-203; MR 26#1878.

[8] Z. Filáková, P. Mihók and G. Semanišin, On maximal k-degenerate graphs, to appear in Math. Slovaca.

[9] A. Hajnal, A theorem on k-saturated graphs, Canad. J. Math. 17 (1965) 720-724; MR31#3354.

[10] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209.

[11] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.

[12] R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096; MR42#1715.

[13] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.

[14] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18; MR96c:05149, doi: 10.7151/dmgt.1002.

[15] J. Mitchem, An extension of Brooks' theorem to r-degenerate graphs, Discrete Math. 17 (1977) 291-298; MR 55#12561.

[16] J. Mitchem, Maximal k-degenerate graphs, Utilitas Math. 11 (1977) 101-106.

[17] G. Semanišin, On some variations of extremal graph problems, Discussiones Mathematicae Graph Theory 17 (1997) 67-76, doi: 10.7151/dmgt.1039.

[18] J.M.S. Simoes-Pereira, On graphs uniquely partitionable into n-degenerate subgraphs, in: Infinite and finite sets - Colloquia Math. Soc. J. Bólyai 10 (North-Holland Amsterdam, 1975) 1351-1364; MR53#2758.

[19] J.M.S. Simoes-Pereira, A survey on k-degenerate graphs, Graph Theory Newsletter 5 (6) (75/76) 1-7; MR 55#199.