Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_1_a1, author = {Broere, Izak and Frick, Marietjie and Semani\v{s}in, Gabriel}, title = {Maximal graphs with respect to hereditary properties}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {51--66}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a1/} }
TY - JOUR AU - Broere, Izak AU - Frick, Marietjie AU - Semanišin, Gabriel TI - Maximal graphs with respect to hereditary properties JO - Discussiones Mathematicae. Graph Theory PY - 1997 SP - 51 EP - 66 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a1/ LA - en ID - DMGT_1997_17_1_a1 ER -
Broere, Izak; Frick, Marietjie; Semanišin, Gabriel. Maximal graphs with respect to hereditary properties. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 51-66. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a1/
[1] G. Benadé, I. Broere, B. Jonck and M. Frick, Uniquely $(m,k)^τ$-colourable graphs and k-τ-saturated graphs, Discrete Math. 162 (1996) 13-22, doi: 10.1016/0012-365X(95)00301-C.
[2] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs, submitted.
[3] M. Borowiecki, J. Ivančo, P. Mihók and G. Semanišin, Sequences realizable by maximal k-degenerate graphs, J. Graph Theory 19 (1995) 117-124; MR96e:05078.
[4] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
[5] I. Broere, M. Frick and P. Mihók, On the order of uniquely partitionable graphs, submitted.
[6] G. Chartrand and L. Lesniak, Graphs and Digraphs, (Wadsworth Brooks/Cole, Monterey California, 1986).
[7] P. Erdős and T. Gallai, On the minimal number of vertices representing the edges of a graph, Magyar Tud. Akad. Math. Kutató Int. Közl. 6 (1961) 181-203; MR 26#1878.
[8] Z. Filáková, P. Mihók and G. Semanišin, On maximal k-degenerate graphs, to appear in Math. Slovaca.
[9] A. Hajnal, A theorem on k-saturated graphs, Canad. J. Math. 17 (1965) 720-724; MR31#3354.
[10] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209.
[11] J. Kratochvíl, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040.
[12] R. Lick and A.T. White, k-degenerate graphs, Canad. J. Math. 22 (1970) 1082-1096; MR42#1715.
[13] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, Hypergraphs and Matroids (Zielona Góra, 1985) 49-58.
[14] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Math. Graph Theory 15 (1995) 11-18; MR96c:05149, doi: 10.7151/dmgt.1002.
[15] J. Mitchem, An extension of Brooks' theorem to r-degenerate graphs, Discrete Math. 17 (1977) 291-298; MR 55#12561.
[16] J. Mitchem, Maximal k-degenerate graphs, Utilitas Math. 11 (1977) 101-106.
[17] G. Semanišin, On some variations of extremal graph problems, Discussiones Mathematicae Graph Theory 17 (1997) 67-76, doi: 10.7151/dmgt.1039.
[18] J.M.S. Simoes-Pereira, On graphs uniquely partitionable into n-degenerate subgraphs, in: Infinite and finite sets - Colloquia Math. Soc. J. Bólyai 10 (North-Holland Amsterdam, 1975) 1351-1364; MR53#2758.
[19] J.M.S. Simoes-Pereira, A survey on k-degenerate graphs, Graph Theory Newsletter 5 (6) (75/76) 1-7; MR 55#199.