Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1997_17_1_a0, author = {Borowiecki, Mieczys{\l}aw and Broere, Izak and Frick, Marietjie and Mih\'ok, Peter and Semani\v{s}in, Gabriel}, title = {A survey of hereditary properties of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {5--50}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {1997}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a0/} }
TY - JOUR AU - Borowiecki, Mieczysław AU - Broere, Izak AU - Frick, Marietjie AU - Mihók, Peter AU - Semanišin, Gabriel TI - A survey of hereditary properties of graphs JO - Discussiones Mathematicae. Graph Theory PY - 1997 SP - 5 EP - 50 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a0/ LA - en ID - DMGT_1997_17_1_a0 ER -
%0 Journal Article %A Borowiecki, Mieczysław %A Broere, Izak %A Frick, Marietjie %A Mihók, Peter %A Semanišin, Gabriel %T A survey of hereditary properties of graphs %J Discussiones Mathematicae. Graph Theory %D 1997 %P 5-50 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a0/ %G en %F DMGT_1997_17_1_a0
Borowiecki, Mieczysław; Broere, Izak; Frick, Marietjie; Mihók, Peter; Semanišin, Gabriel. A survey of hereditary properties of graphs. Discussiones Mathematicae. Graph Theory, Tome 17 (1997) no. 1, pp. 5-50. http://geodesic.mathdoc.fr/item/DMGT_1997_17_1_a0/
[1] K. Appel and W. Haken, Every planar graph is four colourable, Illinois Jour. Math. 21(1977) 429-567.
[2] G. Benadé, I. Broere, B. Jonck and M. Frick, Uniquely $(m,k)^τ$-colourable graphs and k-τ-saturated graphs, Discrete Math. 162 (1996) 13-22.
[3] G. Birkhoff, Lattice theory (AMS, New York, 1948).
[4] B. Bollobás and B. Manvel, Optimal vertex partitions, Bull. London Math. Soc. 11(1979) 113-116, doi: 10.1112/blms/11.2.113.
[5] B. Bollobás and N. Sauer, Uniquely colourable graphs with large girth, Canad. J. Math. 28 (1976) no. 2 1340-1344; MR55#2632.
[6] B. Bollobás and A.G. Thomason, Uniquely partitionable graphs, J. London Math. Soc. (2) 16 (1977) 403-410.
[7] B. Bollobás and A.G. Thomason, Hereditary and monotone properties of graphs, in: R.L. Graham and J. Nesetril, eds., The mathematics of Paul Erdős, II, Algorithms and Combinatorics 14 (Springer-Verlag, 1997) 70-78.
[8] J. A. Bondy and U. S. Murty, Graph theory with applications (American Elsevier Publishing Co., Inc., New York, 1976); MR54#117.
[9] O. V. Borodin, On decomposition of graphs into degenerate subgraphs, Diskret. Analiz. 28(1976) 3-11.
[10] O. V. Borodin, On acyclic colouring of planar graphs, Discrete Math.25(1979) 211-236, doi: 10.1016/0012-365X(79)90077-3.
[11] M. Borowiecki, I. Broere and P. Mihók, Minimal reducible bounds for planar graphs (manuscript) 1997.
[12] M. Borowiecki, I. Broere and P. Mihók, On generalized list colourings of graphs (manuscript) 1997.
[13] M. Borowiecki, E. Drgas-Burchardt and P. Mihók, Generalized list colouring of graphs, Discuss. Mathematicae Graph Theory 15(1995) 185-193, doi: 10.7151/dmgt.1016.
[14] M. Borowiecki, M. Hałuszczak and M. Skowronska, Minimal reducible bounds for 1-non-outerplanar graphs, Report IM-1-96, Inst. Math., Technical Univ. of Zielona Góra, Zielona Góra, 1996.
[15] M. Borowiecki, J. Ivanco, P. Mihók and G. Semanišin, Sequences realizable by maximal k-degenerate graphs, J. Graph Theory 19(1995) 117-124; MR96e:05078.
[16] M. Borowiecki and D. Michalak, Generalized independence and domination in graphs, Report IM-96, Inst. Math., Technical Univ. of Zielona Góra, Zielona Góra, 1996.
[17] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V. R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 42-69.
[18] P. Borowiecki and J. Ivanco, P-bipartitions of minor hereditary properties Discussiones Mathematicae Graph Theory 17 (1997) 89-93.
[19] I. Broere and M. Frick, On the order of uniquely (k,m)-colourable graphs, Discrete mathematics 82 (1990) 225-232, doi: 10.1016/0012-365X(90)90200-2.
[20] I. Broere, M. Frick and P. Mihók, On the order of uniquely partitionable graphs Discussiones Mathematicae Graph Theory 17 (1997) 115-125.
[21] I. Broere, M. Frick and G. Semanišin, Maximal graphs with respect to hereditary properties Discussiones Mathematicae Graph Theory 17 (1997) 51-66. (manuscript).
[22] R. L. Brooks, On colouring the nodes of a network, Proc. Cambridge Phil. Soc. 37(1941) 194-197, doi: 10.1017/S030500410002168X.
[23] J.I. Brown, The complexity of generalized graph coloring, Discrete Appl. Math. 69(1996) 257-270, doi: 10.1016/0166-218X(96)00096-0.
[24] J. Bucko, P. Mihók and M. Voigt, Uniquely partitionable planar graphs (submitted) 1996.
[25] S.A. Burr and M.S. Jacobson, On inequalities involving vertex partition parameter of graphs, Congr. Numerantium 70(1990) 159-170.
[26] G. Chartrand, D. Geller and S. Hedetniemi, Graphs with forbidden subgraphs, Journal of Combinatorial Theory (B) 10(1971) 12-41; MR44#2645.
[27] G. Chartrand and J. P. Geller, Uniquely colourable planar graphs, J. Comb. Theory 6(1969) 271-278; MR39#2661.
[28] G. Chartrand, H.V. Kronk and C.E. Wall, The point-arboricity of a graph, Israel J. Math. 6(1968) 169-175, doi: 10.1007/BF02760181.
[29] G. Chartrand and L. Lesniak, Graphs and digraphs (Wadsworth Brooks/Cole, Monterey California, 1986).
[30] E. J. Cockayne, S. T. Hedetniemi and R. Laskar, Gallai theorems for graphs, hypergraphs and set systems, Discrete Math. 72(1988) 35-47, doi: 10.1016/0012-365X(88)90192-6.
[31] L. J. Cowen, R. H. Cowen and D. R. Woodall, Defective colorings of graphs in surfaces; partitions into subgraphs of bounded valency, Journal of Graph Theory 10(1986) 187-195, doi: 10.1002/jgt.3190100207.
[32] L. J. Cowen, W. Goddard and C.E. Jesurum, Defective coloring revisited (to appear).
[33] K. Edwards, The complexity of some graph colouring problems, Discrete Appl. Math. 36(1992) 131-140, doi: 10.1016/0166-218X(92)90227-2.
[34] P. Erdős, Some recent results on extremal problems in graph theory, in: P. Rosentstiehl, ed., Theory of graphs vol. 38 (Gordon and Breach New York, Dunod Paris, 1967) 117-123; MR37#2634.
[35] P. Erdős, On some new inequalities concerning extremal properties of graphs, in: P. Erdős and G.Katona, eds., Theory of graphs vol. 38 (Academic Press, New York, 1968) 77-81; MR38#1026.
[36] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs Proc. West Coast Conf. on Combin., Graph Theory and Computing (Congressus Numerantium XXVI, 1979) 125-157.
[37] Z. Filáková, P. Mihók and G. Semanišin, On maximal k-degenerate graphs (to appear in Mathematica Slovaca in 1997).
[38] M. Frick, A survey of (m,k)-colourings, in: J. Gimbel c.a, ed., Quo Vadis, Graph Theory? Annals of Discrete Mathematics vol. 55 (North-Holland, Amsterdam, 1993) 45-58.
[39] M. Frick and M. A. Henning, Extremal results on defective colorings of graphs, Discrete mathematics 126(1994) 151-158, doi: 10.1016/0012-365X(94)90260-7.
[40] T. Gallai, Uber extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eotvos Sect. Math. 2(1959) 133 - 138 (German); MR24#A1222.
[41] T. Gallai, Kritische Graphen I, Publ. Math. Inst. Hung. Acad. Sci.8 (1963) 165 - 192 (German); MR32#5540.
[42] M. Garey, D. Johnson and R.E. Tarjan, The planar hamiltonian circuit problem is NP-complete, SIAM J. Computing 5(1976) 704-714, doi: 10.1137/0205049.
[43] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness (W.H. Freeman, San Francisco, CA, 1979).
[44] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Comput. Sci. 1(1976) 237-267, doi: 10.1016/0304-3975(76)90059-1.
[45] W. Goddard, Acyclic colorings of planar graphs, Discrete Math. 91 (1991) 91-94, doi: 10.1016/0012-365X(91)90166-Y.
[46] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey theory (A Wiley-Interscience Publication, New York, 1980).
[47] G. Gratzer, Universal algebra (D. van Nostrand and Co., 1968).
[48] D. L. Greenwell, R. L. Hemminger and J. Klerlein, Forbidden subgraphs Pro. 4th S-E Conf. Combinatorics, Graph Theory and Computing (Utilitas Math., Winnipeg, Man., 1973) 389-394; MR50#6924.
[49] B. Grunbaum, Acyclic colorings of planar graphs, Israel J. Math. 14(1973) 390-408, doi: 10.1007/BF02764716.
[50] S. Gutner, The complexity of planar graph choosability, Discrete Math.159(1996) 119-130, doi: 10.1016/0012-365X(95)00104-5.
[51] S.L. Hakimi, E. Schmeichel and J. Weinstein, Partitioning planar graphs into independent sets and forest, Congressus Numerantium 78(1990) 109-118.
[52] F. Harary, S. T. Hedetniemi and R. W. Robinson, Uniquely colourable graphs, J. Comb. Theory 6(1969) 264-270; MR39#99.
[53] S. T. Hedetniemi, Hereditary properties of graphs, J. Combin. Theory (B) 14(1973) 94-99; MR47#4861.
[54] S. T. Hedetniemi and R. Laskar, Connected domination in graphs, in: B. Bollobás, ed., Graph theory and combinatorics (Academic Press, London, 1984) 209-218.
[55] P. Hell and J. Nesetril, On the complexity of H-coloring, J. Comb. Theory (B) 48(1990) 92-110, doi: 10.1016/0095-8956(90)90132-J.
[56] M. A. Henning and H. C. Swart, Bounds on a generalized domination parameter, Quaestiones Math. 13(1990) 237-253, doi: 10.1080/16073606.1990.9631615.
[57] T. R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995).
[58] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, Journal of Graph Theory 10 (1986) 203-210, doi: 10.1002/jgt.3190100209.
[59] S. Klavžar and M. Petkovsek, On characterizations with forbidden subgraphs, Colloquia Mathematica Societatis János Bolyai, 52. Combinatorics, Eger 2(1987) 331-339.
[60] A. V. Kostochka, M. Stiebitz and B. Wirth, The colour theorems of Brooks and Gallai extended, Discrete Math. 162(1996) 299-303, doi: 10.1016/0012-365X(95)00294-7.
[61] J. Kratochvil and P. Mihók, Hom-properties are uniquely factorizable into irreducible factors (submitted).
[62] J. Kratochvil, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties (submitted).
[63] J. Kratochvil and Zs. Tuza, Algorithmic complexity of list colorings, Discrete Appl. Math. 50 (1994) 297-302, doi: 10.1016/0166-218X(94)90150-3.
[64] R. Lick and A. T. White, k-degenerate graphs, Canadian Journal of Mathematics 22(1970) 1082-1096; MR42#1715.
[65] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238; MR34#2442.
[66] P. Mihók, The minimal reducible bounds for degenerate classes of graphs (manuscript).
[67] P. Mihók, On graphs critical with respect to vertex partition numbers, Discrete Math. 37(1981) 123-126, doi: 10.1016/0012-365X(81)90146-1.
[68] P.Mihók, On vertex partition numbers of graphs, in: M. Fiedler, ed., Graphs and Other Combinatorial Topics, Proc. of the Third Czechoslovak Symp. on Graph Theory (Praha 1982) (Teubner-Texte, Leipzig, 1983) 15-18.
[69] P. Mihók, Additive hereditary properties and uniquely partitionable graphs, in: M. Borowiecki and Z. Skupień, eds., Graphs, hypergraphs and matroids (Zielona Góra, 1985) 49-58.
[70] P. Mihók, On graphs critical with respect to generalized independence numbers, Colloquia Mathematica Societatis János Bolyai 52. Combinatorics, Eger 2(1987) 417-421.
[71] P. Mihók, On the minimal reducible bound for outerplanar and planar graphs, Discrete Math. 150(1996) 431-435, doi: 10.1016/0012-365X(95)00211-E.
[72] P. Mihók and G. Semanišin, On the chromatic number of reducible hereditary properties (submitted).
[73] P. Mihók and G. Semanišin, Reducible properties of graphs, Discussiones Mathematicae - Graph Theory 15(1995) 11-18; MR96c:05149.
[74] P. Mihók and R. Vasky, On the factorization of reducible properties of graphs into irreducible factors, Discussiones Mathematicae - Graph Theory 15(1995) 195-203; MR96i:05134.
[75] J. Mitchem, Maximal k-degenerate graphs, Utilitas Math. 11(1977) 101-106.
[76] J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3(1955) 161-162.
[77] J. Nesetril, Graph homomorphism and their structure, in: Y. Alavi and A. Schwenk, eds., Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs vol. 2 (, 1995) 825-832.
[78] J. Nesetril and V. Rodl, Partitions of vertices, Comment. Math. Univ. Carolinae 17(1976) no. 1 85-95; MR54#173.
[79] J. Nieminen, Two bounds for the domination number of a graph, J. Inst. Math. Appl. 14(1974) 183-187; MR50#9708.
[80] L. T. Ollmann, $K_{2,2}$-saturated graphs with minimal number of edges Proc. 3rd S-E Conference on Combinatorics, Graph Theory and Computing (Boca Raton, Fla., 1972) (Florida Atlantic Univ., Boca Raton, Fla., 1972) 367-392; MR50#1970.
[81] O. Ore, Theory of graphs(Amer. Math. Soc. Colloq. Publ., vol. XXXVIII, AMS Providence, 1962); MR27#740.
[82] K. S. Poh, On the linear vertex-arboricity of a planar graph, Journal of Graph Theory 14(1990) 73-75, doi: 10.1002/jgt.3190140108.
[83] E. R. Scheinerman, On the structure of hereditary classes of graphs, Journal of Graph Theory 10(1986) 545-551, doi: 10.1002/jgt.3190100414.
[84] G. Semanišin, On some variations of extremal graph problems Discussiones Mathematicae Graph Theory 17 (1997) 67-76.
[85] J. M. S. Simoes-Pereira, Joins of n-degenerate graphs and uniquely (m,n)- partitionable graphs, J. Combin. Theory 21(1976) 21-29, doi: 10.1016/0095-8956(76)90023-X.
[86] M. Simonovits, A method for solving extremal problems in graph theory, in: P. Erdős and G. Katona, eds., Theory of graphs (Academic Press, New York, 1968) 279-319; MR38#2056.
[87] M. Simonovits, Extremal graph problems with symmetrical extremal graphs. additional chromatical conditions, Discrete Mathematics 7(1974) 349-376; MR49#2459.
[88] M. Simonovits, Extremal graph theory, in: L. W. Beineke and R. J. Wilson, eds., Selected topics in graph theory vol. 2 (Academic Press, London, 1983) 161-200.
[89] M. Simonovits, Paul Erdős influence on extremal graph theory, in: R.L. Graham and J. Nesetril, eds., The mathematics of Paul Erdős, II, Algorithms and Combinatorics 14 (Springer-Verlag, 1997) 148-192.
[90] S.K. Stein, B-sets and planar graphs, Pacific J. Math. 37(1971) 217-224; MR46#5180.
[91] L. Stockmeyer, Planar 3-colorability is polynomial complete, SIGACT News (ACM Publication) 5(1973) 19-25, doi: 10.1145/1008293.1008294.
[92] C. Thomassen, Color-critical graphs on fixed surface, Report, Technical University of Denmark, Lyngby, 1995.
[93] C. Thomassen, Decomposing a planar into degenerate graphs, J. Combin. Theory (B) 65(1995) 305-314, doi: 10.1006/jctb.1995.1057.
[94] B. Toft, A survey of Hadwiger's conjecture, Preprints, Institut for Matematik og Datalogi, Odense Universitet, January 1996.
[95] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48(1941) 436-452 (Hungarian); MR8,284j.
[96] P. Turán, On the theory of graph, Colloquia Math. 3(1954) 19-30; MR15,476b.
[97] Zs. Tuza, C₄-saturated graphs of minimum size, Acta Univ.Carolin.- Math. Phys. 30(1989) 161-167.
[98] Zs. Tuza, Graph colorings with local constraints - a survey, Discussiones Mathematicae Graph Theory 17 (1997) (to appear).
[99] V. G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3(1964) 25-30 (Russian); MR34#101.
[100] V. G. Vizing, Colouring the vertices of a graph in prescribed colours, Diskret. Analiz 29(1976) 3-10 (Russian).
[101] M.L. Weaver and D.B. West Relaxed chromatic number of graphs, Graphs and Combinatorics 10(1994) 75-93, doi: 10.1007/BF01202473.
[102] E. Welzl, Color families are dense, Theoretical Computer Sci. 17(1982) 29-41, doi: 10.1016/0304-3975(82)90129-3.
[103] D. Woodall, Improper colorings of graphs, in: R. Nelson and R.J. Wilson, eds., Graph Colorings (Longman, New York, 1990) 45-64.
[104] X. Zhu, Uniquely H-colorable graphs with large girth, Journal of Graph Theory 23(1996) 33-41, doi: 10.1002/(SICI)1097-0118(199609)23:133::AID-JGT3>3.0.CO;2-L.
[105] A.A. Zykov, On some problems of linear complexes, Mat. Sbornik N. S.24(1949) 163-188.