Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_1996_16_2_a9, author = {Richter, R.}, title = {Observations on maps and \ensuremath{\delta}-matroids}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {197--205}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a9/} }
Richter, R. Observations on maps and δ-matroids. Discussiones Mathematicae. Graph Theory, Tome 16 (1996) no. 2, pp. 197-205. http://geodesic.mathdoc.fr/item/DMGT_1996_16_2_a9/
[1] L.D. Andersen, A. Bouchet and W. Jackson, Orthogonal A-trails of 4-regular graphs embedded in surfaces of low genus, J. Combin. Theory (B) 66 (1996) 232-246, doi: 10.1006/jctb.1996.0017.
[2] A. Bouchet, Maps and Δ-matroids, Discrete Math. 78 (1989) 59-71, doi: 10.1016/0012-365X(89)90161-1.
[3] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Prog. 38 (1987) 147-159, doi: 10.1007/BF02604639.
[4] A. Kotzig, Eulerian lines in finite 4-valent graphs and their transformations, in: Theory of Graphs (P. Erdős and G. Katona, eds.) North-Holland, Amsterdam (1968) 219-230.
[5] R.B. Richter, Spanning trees, Euler tours, medial graphs, left-right paths and cycle spaces, Discrete Math. 89 (1991) 261-268, doi: 10.1016/0012-365X(91)90119-M.
[6] E. Tardos, Generalized matroids and supermodular colorings, in Matroid Theory (Szeged 1982), North- Holland, Amsterdam (1985) 359-382.
[7] T. Zaslavsky, Biased graphs I, J. Combin. Theory (B) 47 (1989) 32-52, doi: 10.1016/0095-8956(89)90063-4.